对于生活中的熟悉的动物,我们人脑经过一次扫描,便可以得到该动物的物种!那么机器是如何识别这个图片上的动物是属于哪一物种呢?

本次实验借生活中最常见的猫和狗来探究其原理!

环境准备:

tensorflow ,python,一些data

实验预期:

  当模型训练完成后,我们可以用该模型去预测一张图片属于哪一个类别,很显然,本次项目属于一个二分类问题,

  网上有很多此类的项目,但是都不能很好的落地,那么这次实验所完成的最终结果是,我们上传一张图片,控制台

  便会返回该图片的类别:猫/狗

模型搭建:

  对于图片识别来说,最强大的工具莫过于卷积神经网络,对于CNN的原理也不是很难,只要知道其主要的计算过程即可,

  熟悉CNN的人都知道,并不是层数越多越好,因为层数过多,会造正过拟合,导致实验结果不会很理想,所以经过我多次的实验,

  最终模型的设置如下:

  

model = tf.keras.models.Sequential([

    tf.keras.layers.Conv2D(16, (3, 3), activation='relu', input_shape=(150, 150, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(32, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid')
])

  每一层卷积跟一层最大池化,Conv2D()中参数:16表示卷积核个数,(3,3)表示卷积核大小,很多论文中给出的代码中设定的也是(3,3),input_shape表示输入数据形状,后面是通道数;

  经过最大池化留下来的神经元对输出才会有贡献!环节卷积层对位置的敏感性!

然后再模型之前,我们也需要对数据进行一些操作:读取数据,将数据分为验证数据集和训练数据集

base_dir = 'D:/cats and dogs'

train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation') train_cats_dir = os.path.join(train_dir, 'cats')
train_dogs_dir = os.path.join(train_dir, 'dogs') validation_cats_dir = os.path.join(validation_dir, 'cats')
validation_dogs_dir = os.path.join(validation_dir, 'dogs')

接下来的操作就是一些固定的步骤,对数据进行归一化,生成带标签的数据,绘制损失曲线等,直接上代码:

train_datagen = ImageDataGenerator(rescale=1.0 / 255.)
test_datagen = ImageDataGenerator(rescale=1.0 / 255.) train_generator = train_datagen.flow_from_directory(train_dir,
batch_size=20,
class_mode='binary',
target_size=(150, 150)) validation_generator = test_datagen.flow_from_directory(validation_dir,
batch_size=20,
class_mode='binary',
target_size=(150, 150)) history = model.fit_generator(train_generator,
validation_data=validation_generator,
steps_per_epoch=100,
epochs=15,
validation_steps=50,
verbose=2) model.save('model.h5') acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc)
plt.plot(epochs, val_acc)
plt.title('Training and validation accuracy')
plt.legend(('Training accuracy', 'validation accuracy'))
plt.figure() plt.plot(epochs, loss)
plt.plot(epochs, val_loss)
plt.legend(('Training loss', 'validation loss'))
plt.title('Training and validation loss')
plt.show()

预测部分

from tensorflow.keras.models import load_model
import numpy as np
from tensorflow.keras.preprocessing import image path = 'D:/cats and dogs/cat.123.jpg'
model = load_model('model.h5')
img = image.load_img(path, target_size=(150, 150))
x = image.img_to_array(img) / 255.0 x = np.expand_dims(x, axis=0)
# np.vstack:按垂直方向(行顺序)堆叠数组构成一个新的数组
images = np.vstack([x]) classes = model.predict(images, batch_size=1) if classes[0] > 0.5:
print("图片识别为狗")
else:
print("图片识别为猫")

结果说明还可以!!!!!!!

一个好玩的deep learning Demo!的更多相关文章

  1. Deep Learning(深度学习)学习笔记整理

    申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎样的表 ...

  2. 【转载】Deep Learning(深度学习)学习笔记整理

    http://blog.csdn.net/zouxy09/article/details/8775360 一.概述 Artificial Intelligence,也就是人工智能,就像长生不老和星际漫 ...

  3. 【面向代码】学习 Deep Learning(三)Convolution Neural Network(CNN)

    ========================================================================================== 最近一直在看Dee ...

  4. Deep Learning(深度学习)学习笔记整理系列之(三)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  5. Deep Learning(深度学习)学习笔记整理系列之(二)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  6. Deep Learning速成教程

          引言         深度学习,即Deep Learning,是一种学习算法(Learning algorithm),亦是人工智能领域的一个重要分支.从快速发展到实际应用,短短几年时间里, ...

  7. matlab的Deep Learning的toolbox 中的SAE算法

    最近一直在看Deep Learning,各类博客.论文看得不少 但是说实话,这样做有些疏于实现,一来呢自己的电脑也不是很好,二来呢我目前也没能力自己去写一个toolbox 只是跟着Andrew Ng的 ...

  8. deep learning 以及deep learning 常用模型和方法

    首先为什么会有Deep learning,我们得到一个结论就是Deep learning需要多层来获得更抽象的特征表达. 1.Deep learning与Neural Network 深度学习是机器学 ...

  9. Deep Learning(深度学习)学习笔记整理系列二

    声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部 ...

随机推荐

  1. 一步一步在angular11中添加多语言支持

    1.新建angular 2.添加@angular/localize ng add @angular/localize 3.设置默认locale_id,在app.module.ts中 import { ...

  2. 叫高二上一调?简要题解 (ACD)

    A. 电压机制 题意转换为所有奇环的并排除掉所有偶环留下的边的个数 . 建出 DFS 树,然后只有返祖边可能构成环 . 于是类似树上差分,\(odd_u\) 统计奇环,\(even_u\) 统计偶环 ...

  3. YII缓存操作

    //文件依赖 $dependency = new \yii\caching\FileDependency(['filename'=>'hw.txt'])}; $cache->add(&qu ...

  4. mosquitto使用的基本流程以及一些遇见的问题

    改配置文件 以记事本的方式打开mosquitto.conf更改部分内容,找到# listener port-number [ip address/host name/unix socket path] ...

  5. 关于 java 的动态绑定机制

    关于 java 的动态绑定机制 聊一聊动态绑定机制, 相信看完这篇文章,你会对动态绑定机制有所了解. 网上大多一言概括: 当调用对象的时候,该方法会和该对象的内存地址/运行类型绑定. 当调用对象的属性 ...

  6. 化整为零优化重用,Go lang1.18入门精炼教程,由白丁入鸿儒,go lang函数的定义和使用EP07

    函数是基于功能或者逻辑进行聚合的可复用的代码块.将一些复杂的.冗长的代码抽离封装成多个代码片段,即函数,有助于提高代码逻辑的可读性和可维护性.不同于Python,由于 Go lang是编译型语言,编译 ...

  7. flutter系列之:构建Widget的上下文环境BuildContext详解

    目录 简介 BuildContext的本质 BuildContext和InheritedWidget BuildContext的层级关系 总结 简介 我们知道Flutter中有两种Widget,分别是 ...

  8. 项目实践2:(问卷)用html和css做一个网页

    好家伙,又来写项目了 1.以下是考题,姑且把他理解为甲方吧. 2.以下是附带的题目素材 开干.

  9. Linux之firewalld防火墙规则

    一, 什么是防火墙规则? 允许哪些服务端口被放行,怎么放行,及哪些服务端口被阻拦,如何阻拦的一组网络安全规则.支持ipv4和ipv6,且分为直接规则和富规则两种. 二, 如何管理firewalld 1 ...

  10. Controller以及RestFul风格

    Controller以及RestFul风格 控制器Controller 控制器复杂提供访问应用程序的行为,通常通过接口定义或注解定义两种方式实现 控制器负责解析用户的请求并将其转换为一个模型 在Spr ...