对于生活中的熟悉的动物,我们人脑经过一次扫描,便可以得到该动物的物种!那么机器是如何识别这个图片上的动物是属于哪一物种呢?

本次实验借生活中最常见的猫和狗来探究其原理!

环境准备:

tensorflow ,python,一些data

实验预期:

  当模型训练完成后,我们可以用该模型去预测一张图片属于哪一个类别,很显然,本次项目属于一个二分类问题,

  网上有很多此类的项目,但是都不能很好的落地,那么这次实验所完成的最终结果是,我们上传一张图片,控制台

  便会返回该图片的类别:猫/狗

模型搭建:

  对于图片识别来说,最强大的工具莫过于卷积神经网络,对于CNN的原理也不是很难,只要知道其主要的计算过程即可,

  熟悉CNN的人都知道,并不是层数越多越好,因为层数过多,会造正过拟合,导致实验结果不会很理想,所以经过我多次的实验,

  最终模型的设置如下:

  

model = tf.keras.models.Sequential([

    tf.keras.layers.Conv2D(16, (3, 3), activation='relu', input_shape=(150, 150, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(32, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid')
])

  每一层卷积跟一层最大池化,Conv2D()中参数:16表示卷积核个数,(3,3)表示卷积核大小,很多论文中给出的代码中设定的也是(3,3),input_shape表示输入数据形状,后面是通道数;

  经过最大池化留下来的神经元对输出才会有贡献!环节卷积层对位置的敏感性!

然后再模型之前,我们也需要对数据进行一些操作:读取数据,将数据分为验证数据集和训练数据集

base_dir = 'D:/cats and dogs'

train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation') train_cats_dir = os.path.join(train_dir, 'cats')
train_dogs_dir = os.path.join(train_dir, 'dogs') validation_cats_dir = os.path.join(validation_dir, 'cats')
validation_dogs_dir = os.path.join(validation_dir, 'dogs')

接下来的操作就是一些固定的步骤,对数据进行归一化,生成带标签的数据,绘制损失曲线等,直接上代码:

train_datagen = ImageDataGenerator(rescale=1.0 / 255.)
test_datagen = ImageDataGenerator(rescale=1.0 / 255.) train_generator = train_datagen.flow_from_directory(train_dir,
batch_size=20,
class_mode='binary',
target_size=(150, 150)) validation_generator = test_datagen.flow_from_directory(validation_dir,
batch_size=20,
class_mode='binary',
target_size=(150, 150)) history = model.fit_generator(train_generator,
validation_data=validation_generator,
steps_per_epoch=100,
epochs=15,
validation_steps=50,
verbose=2) model.save('model.h5') acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc)
plt.plot(epochs, val_acc)
plt.title('Training and validation accuracy')
plt.legend(('Training accuracy', 'validation accuracy'))
plt.figure() plt.plot(epochs, loss)
plt.plot(epochs, val_loss)
plt.legend(('Training loss', 'validation loss'))
plt.title('Training and validation loss')
plt.show()

预测部分

from tensorflow.keras.models import load_model
import numpy as np
from tensorflow.keras.preprocessing import image path = 'D:/cats and dogs/cat.123.jpg'
model = load_model('model.h5')
img = image.load_img(path, target_size=(150, 150))
x = image.img_to_array(img) / 255.0 x = np.expand_dims(x, axis=0)
# np.vstack:按垂直方向(行顺序)堆叠数组构成一个新的数组
images = np.vstack([x]) classes = model.predict(images, batch_size=1) if classes[0] > 0.5:
print("图片识别为狗")
else:
print("图片识别为猫")

结果说明还可以!!!!!!!

一个好玩的deep learning Demo!的更多相关文章

  1. Deep Learning(深度学习)学习笔记整理

    申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎样的表 ...

  2. 【转载】Deep Learning(深度学习)学习笔记整理

    http://blog.csdn.net/zouxy09/article/details/8775360 一.概述 Artificial Intelligence,也就是人工智能,就像长生不老和星际漫 ...

  3. 【面向代码】学习 Deep Learning(三)Convolution Neural Network(CNN)

    ========================================================================================== 最近一直在看Dee ...

  4. Deep Learning(深度学习)学习笔记整理系列之(三)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  5. Deep Learning(深度学习)学习笔记整理系列之(二)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  6. Deep Learning速成教程

          引言         深度学习,即Deep Learning,是一种学习算法(Learning algorithm),亦是人工智能领域的一个重要分支.从快速发展到实际应用,短短几年时间里, ...

  7. matlab的Deep Learning的toolbox 中的SAE算法

    最近一直在看Deep Learning,各类博客.论文看得不少 但是说实话,这样做有些疏于实现,一来呢自己的电脑也不是很好,二来呢我目前也没能力自己去写一个toolbox 只是跟着Andrew Ng的 ...

  8. deep learning 以及deep learning 常用模型和方法

    首先为什么会有Deep learning,我们得到一个结论就是Deep learning需要多层来获得更抽象的特征表达. 1.Deep learning与Neural Network 深度学习是机器学 ...

  9. Deep Learning(深度学习)学习笔记整理系列二

    声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部 ...

随机推荐

  1. .net core3.1 abp学习开始(一)

    vs版本 2019,链接数据库使用Navicat,数据库MySql abp的官网:https://aspnetboilerplate.com/,我们去Download这里下载一个模板,需要选好Targ ...

  2. flex 我所理解不够深刻的内容

    1.align-items属性   父元素 align-items属性定义项目在交叉轴上如何对齐. flex-start:交叉轴的起点对齐. flex-end:交叉轴的终点对齐. center:交叉轴 ...

  3. linux 编译式安装nginx

    ./configure --prefix=/usr/local/nginx --sbin-path=/usr/local/nginx/sbin/nginx --conf-path=/usr/local ...

  4. CF242E XOR on Segment

    CF242E XOR on Segment codeforces 洛谷 关于异或,无法运用懒标记实现区间异或: 可以像trie树一样拆位,将每个值拆成二进制数,对此建相应个数的线段树. 0 1与 0异 ...

  5. Apache Hudi vs Delta Lake:透明TPC-DS Lakehouse性能基准

    1. 介绍 最近几周,人们对比较 Hudi.Delta 和 Iceberg 的表现越来越感兴趣. 我们认为社区应该得到更透明和可重复的分析. 我们想就如何执行和呈现这些基准.它们带来什么价值以及我们应 ...

  6. 感谢有你!Apache DolphinScheduler 项目 GitHub star 突破 8k

    本周伊始,Apache DolphinScheduler 项目在 GitHub 上的 Github Star 总数首次突破 8K.目前,Apache DolphinScheduler 社区已经拥有 C ...

  7. HCIA-Datacom 1.1实验 华为VRP系统基本操作

    前言:最近有很多老哥,会私信问我一些华为的网络配置和规划,在调试的时候我发现其实我命令也忘了很多,所以写一个文档,方便大家查阅 实验介绍: 实现功能:1.完成设备重命名,路由器接口IP地址 2.查看设 ...

  8. 一些有用的数学知识(Updating)

    文章目录 拉格朗日插值公式 微分中值定理 费马引理 拉格朗日中值定理 柯西中值定理 洛必达法则 连分数(NOI2021 D2T2 考点) 定义 结论 定理1 定理2 定理3 定理4 定理5 欧拉公式 ...

  9. java方法---递归

    java方法递归 1.什么是递归 就是自己调用自己: 2.递归结构的两个部分 递归头:什么时候不调用自身方法.如果仅有头,将陷入死循环.递归体:什么时候需要调用自身方法.

  10. k8s中ingress,service,depoyment,pod如何关联

    k8s中pod通过label标签名称来识别关联,它们的label  name一定是一样的.ingress,service,depoyment通过selector 中app:name来关联 1.查询发布 ...