动态树 — Euler_Tour_Tree
一般提到动态树,我们会不约而同的想到 LCT,这算是比较通用,实用,能力较为广泛的一种写法了。当然,掌握 LCT 就需要熟悉掌握 Splay 和各种操作和知识。ETT(中文常用称呼:欧拉游览树)是一种及其睿智且暴力,可以用暴力数据结构维护的一种除了能胜任普通动态树的 Link & Cut 操作还可以支持换子树操作(此操作 LCT 无法完成)的动态树。
大家对这括号序很熟悉吧,如:
其括号序为:1 2 5 5 6 6 2 3 3 4 7 8 8 7 4 1。
括号序其实是一个父亲包含儿子的一种树的顺序。
然后我们看一下,如果把 4 的子树移给 3 会怎样?如图:
原图括号序:1 2 5 5 6 6 2 3 3 4 7 8 8 7 4 1
后者括号序:1 2 5 5 6 6 2 3 7 8 8 7 3 4 4 1
可以发现,7 8 8 7 平移到了 3 的后面,而 4 合拢。这就是所谓换子树操作(同样可以用于 Link & Cut 操作)。现在只需要一个数据结构可以做到区间平移且维护一些值,众大佬肯定会说用 Splay,其确实效率很高,不过这里用块状链表维护会简单很多,对于一些数据低于 的题目都可以码得很快。
那怎么维护点到根的信息呢?
其实仔细想想,DFS 序也可以达到平移的效果,那么为什么需要括号序?其实,假如你要查询图中 1 到 8 的和,那么你从括号序中 1 到 8(第一个出现的)中出现两次的数的贡献抹去。如果维护的是 xor,那么直接 xor 两次即可。如果维护的是 sum,那么第一个出现的数字的贡献为正,第二个为负,然后用块状链表维护区间和即可。
用块状链表后除了单点修改是 \(O(1)\) 外其他都是 \(O(\sqrt n)\) 的。
ETT 不支持换根操作。对于链(区间)修改,分为两种情况,一是贡献相同(如 xor)是可以的,二是贡献不同(如 sum)是不行的。现在的主流做法毕竟是 LCT,所以这些操作比较多,在避开这种操作的情况下运用这种做法还是不错的。
注:标准的 ETT(用欧拉回路而不是 DFS 括号序实现)是支持换根操作的,但是实现较为复杂。
#3786. 星系探索
点击查看代码
#include<bits/stdc++.h>
using namespace std;
int n,m;
int ver[200005],ne[200005],head[100005],cnt;
inline void link(int x,int y){
ver[++cnt]=y;
ne[cnt]=head[x];
head[x]=cnt;
}
int w[100005];
vector<int> vec;
int son[2][200005],val[200005],fa[200005],rt,siz[200005],tot[200005];
long long sum[200005],tag[200005];
inline void pushup(int x){
sum[x]=sum[son[0][x]]+val[x]+sum[son[1][x]];
tot[x]=tot[son[0][x]]+siz[x]+tot[son[1][x]];
}
inline void push(int x){
if(!tag[x])return ;
if(son[0][x]){
sum[son[0][x]]+=tag[x]*tot[son[0][x]];
val[son[0][x]]+=siz[son[0][x]]*tag[x];tag[son[0][x]]+=tag[x];
}
if(son[1][x]){
sum[son[1][x]]+=tag[x]*tot[son[1][x]];
val[son[1][x]]+=siz[son[1][x]]*tag[x];tag[son[1][x]]+=tag[x];
}tag[x]=0;
}
inline void rotate(int x,int &k){
int y=fa[x],z=fa[y];
if(y==k)k=x;else son[son[1][z]==y][z]=x;
bool is=(son[1][y]==x);
son[is][y]=son[!is][x];fa[son[!is][x]]=y;
son[!is][x]=y;fa[y]=x;fa[x]=z;pushup(x);pushup(y);
}
int stk[200005],top;
inline void splay(int x,int &k){
stk[++top]=x;
for(int i=x;i!=k;i=fa[i])stk[++top]=fa[i];
while(top)push(stk[top--]);
while(x!=k){
int y=fa[x],z=fa[y];
if(y!=k){
if((son[1][y]==x)^(son[1][y]==z))rotate(x,k);
else rotate(y,k);
}rotate(x,k);
}
}
int build(int l=0,int r=vec.size()-1){
if(l>r)return 0;
int mid=(l+r)>>1,i=vec[mid];
son[0][i]=build(l,mid-1);fa[son[0][i]]=i;
son[1][i]=build(mid+1,r);fa[son[1][i]]=i;pushup(i);
return i;
}
void dfs(int x,int fi){
tot[x]=siz[x]=1;
sum[x]=val[x]=w[x];vec.push_back(x);
for(int i=head[x];i;i=ne[i]){
int u=ver[i];
if(u==fi)continue;
dfs(u,x);
}
tot[x+n]=siz[x+n]=-1;
sum[x+n]=val[x+n]=-w[x];vec.push_back(x+n);
}
inline int pre(int x){
splay(x,rt);x=son[0][x];
while(son[1][x])x=son[1][x];
return x;
}
inline int nxt(int x){
splay(x,rt);x=son[1][x];
while(son[0][x])x=son[0][x];
return x;
}
void put(int x){
if(son[0][x])put(son[0][x]);
if(x<=2*n)printf("%d ",x<=n?x:-x+n);
if(son[1][x])put(son[1][x]);
}
inline int& split(int l,int r){
int x=pre(l),y=nxt(r);
splay(x,rt);splay(y,son[1][x]);
return son[0][y];
}
inline void update(int x,int v){
int y=split(x,x+n);
val[y]+=siz[y]*v;sum[y]+=tot[y]*v;
tag[y]+=v;pushup(fa[y]);push(fa[fa[y]]);
}
inline void move(int x,int y){
int &z=split(x,x+n),k=z;
z=0;pushup(fa[k]);pushup(fa[fa[k]]);
int t=split(y,y);son[1][t]=k;fa[k]=t;
pushup(t);pushup(fa[t]);pushup(fa[fa[t]]);
}
inline long long query(int x){
int y=nxt(x);
splay(y,rt);return sum[son[0][y]];
}
char op[15];
int main(){
scanf("%d",&n);
for(int i=2;i<=n;i++){
int x;scanf("%d",&x);
link(x,i);link(i,x);
}
for(int i=1;i<=n;i++)scanf("%d",&w[i]);
vec.push_back(2*n+1);dfs(1,1);
vec.push_back(2*n+2);rt=build();
scanf("%d",&m);
while(m--){
scanf("%s",op);
if(op[0]=='Q'){
int x;scanf("%d",&x);
printf("%lld\n",query(x));
}
else if(op[0]=='C'){
int x,y;scanf("%d%d",&x,&y);
move(x,y);
}
else if(op[0]=='F'){
int x,y;scanf("%d%d",&x,&y);
update(x,y);
}
}
return 0;
}
[BJOI2014]大融合
点击查看代码
动态树 — Euler_Tour_Tree的更多相关文章
- 如何利用FineReport制作动态树报表
在对数据字段进行分类管理时,利用动态树折叠数据是一个很好的方法,也就是点击数据前面的加号才展开对应下面的数据,如下图.那这样的效果在制作报表时该如何实现呢? 下面以报表工具FineReport为例介绍 ...
- 动态树之LCT(link-cut tree)讲解
动态树是一类要求维护森林的连通性的题的总称,这类问题要求维护某个点到根的某些数据,支持树的切分,合并,以及对子树的某些操作.其中解决这一问题的某些简化版(不包括对子树的操作)的基础数据结构就是LCT( ...
- 【BZOJ-3589】动态树 树链剖分 + 线段树 + 线段覆盖(特殊的技巧)
3589: 动态树 Time Limit: 30 Sec Memory Limit: 1024 MBSubmit: 405 Solved: 137[Submit][Status][Discuss] ...
- BZOJ-2049 Cave洞穴勘测 动态树Link-Cut-Tree (并查集骗分TAT)
2049: [Sdoi2008]Cave 洞穴勘测 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 5833 Solved: 2666 [Submit] ...
- 学习笔记-动态树Link-Cut-Tree
--少年你有梦想吗? --少年你听说过安利吗? 安利一个集训队讲解:http://wenku.baidu.com/view/75906f160b4e767f5acfcedb 关于动态树问题,有多种方法 ...
- BZOJ 3589 动态树(子树操作,链查询)
题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3589 题意:给出一棵有根树,两种操作:(1)以u为根的子树所有节点权值加上一个数字 ...
- Tsinsen A1517. 动态树 树链剖分,线段树,子树操作
题目 : http://www.tsinsen.com/A1517 A1517. 动态树 时间限制:3.0s 内存限制:1.0GB 总提交次数:227 AC次数:67 平均分:49. ...
- 动态树 Link-Cut Trees
动态树 动态树问题, 即要求我们维护一个由若干棵子结点无序的有根树组成的森林. 要求这个数据结构支持对树的分割.合并,对某个点到它的根的路径的某些操作,以及对某个点的子树进行的某些操作. 在这里我们考 ...
- bzoj 2594: [Wc2006]水管局长数据加强版 动态树
2594: [Wc2006]水管局长数据加强版 Time Limit: 25 Sec Memory Limit: 128 MBSubmit: 934 Solved: 291[Submit][Sta ...
随机推荐
- 为何PostgreSQL即将超越SQL Server?
DB-Engines 2021年10月份统计,PostgreSQL当月上升10.30点,总分是597.27:SQLServer当月大幅下降16.32,总分是954.29 .按照这样的速度,2年之内,P ...
- 阿里云IoT流转到postgresql数据库方案
之前写过一篇如使用阿里云上部署.NET 3.1自定义运行时的文章,吐槽一下,虽然现在已经2022年了,但是阿里云函数计算的支持依然停留在.NET Core 2.1,更新缓慢,由于程序解包大小的限制,也 ...
- Spring从入门到源码(一)
Spring 1.什么是框架? 人话就是:方便干活,架子有了,直接拿来用就完事了. spring,springmvc,mybatis三大开框架 2.架构的演变过程 单一应用架构 垂直应用架构 分布式服 ...
- 观察者模式与Google Guava EventBus实现
概述 观察者模式又被称为发布-订阅(Publish/Subscribe)模式,属于行为型模式的一种. 它定义了一种一对多的依赖关系,让多个观察者对象同时监听某一个主题对象.这个主题对象在状态变化时,会 ...
- web前端 在 iOS下 input不能输入 以及获取焦点之后会出现蓝色的border轮廓
iOS下 input 不能获取焦点 获取焦点后:设置border:none无效果 .hb_content input{ display: inline-block; margin-left: 0.22 ...
- 干货 | 亿级Web系统负载均衡几种实现方式
一个执着于技术的公众号 负载均衡(Load Balance)是集群技术(Cluster)的一种应用技术.负载均衡可以将工作任务分摊到多个处理单元,从而提高并发处理能力.目前最常见的负载均衡应用是Web ...
- IIS发布Https和Https的问题
asp.net调试页面的时候遇到一个问题,我喜欢右键点击在浏览器查看页面,打开的页面默认是https的,其实iis会同时生成http和https两种页面,但是我懒得每次去点.问题是页面中测试接口是ht ...
- 如何使用Docker构建前端项目
原文链接 Docker单独部署前端项目和Node项目是非常便捷的,在这里分享一下Docker的使用,主要聊聊它的部署实践.(我是window10专业版安装Docker) Docker Docker是一 ...
- Nexus5x 刷机
1.刷机方式 线刷 线刷的本质的是对分区的全部内容的替换,线刷的包通常比较大. 卡刷 顾名思义,将升级包放在存储卡上,然后进入Recovery引导模式对系统进行刷机.卡刷本质是对文件的替换过程.它不会 ...
- chkconfig-配置系统服务
管理Linux系统开机启动项. chkconfig命令默认在CentOS7+中不被使用了,由于系统服务管理都交给了systemctl托管. 语法 chkconfig [--list] [--type ...