Local Model Poisoning Attacks to Byzantine-Robust Federated Learning
In federated learning, multiple client devices jointly learn a machine learning model: each client device maintains a local model for its local training dataset, while a master device maintains a global model via aggregating the local models from the client devices. The machine learning community recently proposed several federated learning methods that were claimed to be robust against Byzantine failures (eg, system failures, adversarial manipulations) of certain client devices. In this work, we perform the first systematic study on local model poisoning attacks to federated learning. We assume an attacker has compromised some client devices, and the attacker manipulates the local model parameters on the compromised client devices during the learning process such that the global model has a large testing error rate. We formulate our attacks as optimization problems and apply our attacks to four recent Byzantine-robust federated learning methods. Our empirical results on four real-world datasets show that our attacks can substantially increase the error rates of the models learnt by the federated learning methods that were claimed to be robust against Byzantine failures of some client devices. We generalize two defenses for data poisoning attacks to defend against our local model poisoning attacks. Our evaluation results show that one defense can effectively defend against our attacks in some cases, but the defenses are not effective enough in other cases, highlighting the need for new defenses against our local model poisoning attacks to federated learning.

Local Model Poisoning Attacks to Byzantine-Robust Federated Learning的更多相关文章
- 【流行前沿】联邦学习 Partial Model Averaging in Federated Learning: Performance Guarantees and Benefits
Sunwoo Lee, , Anit Kumar Sahu, Chaoyang He, and Salman Avestimehr. "Partial Model Averaging in ...
- 【论文笔记】A review of applications in federated learning(综述)
A review of applications in federated learning Authors Li Li, Yuxi Fan, Mike Tse, Kuo-Yi Lin Keyword ...
- Advances and Open Problems in Federated Learning
挖个大坑,等有空了再回来填.心心念念的大综述呀(吐血三升)! 郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 项目地址:https://github.com/open-intellige ...
- 【论文笔记】A Survey on Federated Learning: The Journey From Centralized to Distributed On-Site Learning and Beyond(综述)
A Survey on Federated Learning: The Journey From Centralized to Distributed On-Site Learning and Bey ...
- Federated Learning: Challenges, Methods, and Future Directions
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1908.07873v1 [cs.LG] 21 Aug 2019 Abstract 联邦学习包括通过远程设备或孤立的数据中心( ...
- 联邦学习(Federated Learning)
联邦学习简介 联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是 ...
- 联邦学习 Federated Learning 相关资料整理
本文链接:https://blog.csdn.net/Sinsa110/article/details/90697728代码微众银行+杨强教授团队的联邦学习FATE框架代码:https://githu ...
- Overcoming Forgetting in Federated Learning on Non-IID Data
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. NeurIPS 2019 Workshop on Federated Learning ...
- Reliable Federated Learning for Mobile Networks
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. arXiv: 1910.06837v1 [cs.CR] 14 Oct 2019 Abst ...
随机推荐
- 怎么把CAT客户端的RootMessageId记录到每条日志中?
什么是RootMessageId? 为了理解RootMessageId先简单介绍一下CAT的数据结构设计.CAT客户端会将所有消息都封装为一个完整的消息树(MessageTree),消息树可能包括Tr ...
- 问题:做EsayUI分页报错 $(...).pagination is not a function之后我把<jsp:include page="top.jsp"/>去掉就好了,有大神知道为什么吗?另外分页按键放在那里好些,我放到form表单下,就开始显示,点一下后就没有了
<%@ page language="java" contentType="text/html; charset=utf-8" pageEncoding= ...
- Look into Bitmap images
What's a Bitmap image? I'm not going to explain the differences between raster and vector images, no ...
- Worktile正式发布全新研发产品!
经过近一年时间的打磨,Worktile研发产品正式发布啦!和以往Worktile版本升级不同的是,这是一个全新的产品形态,目前已上线 Agile(敏捷开发).Pipe(持续交付).Testhub(测试 ...
- Apache Hudi 介绍与应用
Apache Hudi Apache Hudi 在基于 HDFS/S3 数据存储之上,提供了两种流原语: 插入更新 增量拉取 一般来说,我们会将大量数据存储到HDFS/S3,新数据增量写入,而旧数据鲜 ...
- 【原创】(十一)Linux内存管理slub分配器
背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: Kernel版本: ...
- node.js安装express框架(1)
一.全局安装express 使用express首先确保你的node.js已经安装好了环境变量配置成功,安装了npm或者cnpm 你可以在终端上面输入node -v查看你的node版本号 打开cmd终端 ...
- 新闻实时分析系统-Hadoop2.X分布式集群部署
(一)hadoop2.x版本下载及安装 Hadoop 版本选择目前主要基于三个厂商(国外)如下所示: 1.基于Apache厂商的最原始的hadoop版本, 所有发行版均基于这个版本进行改进. 2.基于 ...
- 第9场 E-All men are brothers(并查集)
题目链接 题意:n个人,m次操作,每次操作使得两个人(x,y)成为朋友,朋友的关系是可以传递的,计算执行每次操作后,选择四个人两两都不是朋友的不同方案的数目. 数据范围:(n <= 100000 ...
- fastjson 1.2.24-基于JdbcRowSetImpl的PoC构造与分析
前言: 基于fastjson的第一种payload是基于templatesImpl的方式,但是这种方式要求Feature.SupportNonPublicField才能打开非公有属性的反序列化处理,是 ...