Local Model Poisoning Attacks to Byzantine-Robust Federated Learning
In federated learning, multiple client devices jointly learn a machine learning model: each client device maintains a local model for its local training dataset, while a master device maintains a global model via aggregating the local models from the client devices. The machine learning community recently proposed several federated learning methods that were claimed to be robust against Byzantine failures (eg, system failures, adversarial manipulations) of certain client devices. In this work, we perform the first systematic study on local model poisoning attacks to federated learning. We assume an attacker has compromised some client devices, and the attacker manipulates the local model parameters on the compromised client devices during the learning process such that the global model has a large testing error rate. We formulate our attacks as optimization problems and apply our attacks to four recent Byzantine-robust federated learning methods. Our empirical results on four real-world datasets show that our attacks can substantially increase the error rates of the models learnt by the federated learning methods that were claimed to be robust against Byzantine failures of some client devices. We generalize two defenses for data poisoning attacks to defend against our local model poisoning attacks. Our evaluation results show that one defense can effectively defend against our attacks in some cases, but the defenses are not effective enough in other cases, highlighting the need for new defenses against our local model poisoning attacks to federated learning.
Local Model Poisoning Attacks to Byzantine-Robust Federated Learning的更多相关文章
- 【流行前沿】联邦学习 Partial Model Averaging in Federated Learning: Performance Guarantees and Benefits
Sunwoo Lee, , Anit Kumar Sahu, Chaoyang He, and Salman Avestimehr. "Partial Model Averaging in ...
- 【论文笔记】A review of applications in federated learning(综述)
A review of applications in federated learning Authors Li Li, Yuxi Fan, Mike Tse, Kuo-Yi Lin Keyword ...
- Advances and Open Problems in Federated Learning
挖个大坑,等有空了再回来填.心心念念的大综述呀(吐血三升)! 郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 项目地址:https://github.com/open-intellige ...
- 【论文笔记】A Survey on Federated Learning: The Journey From Centralized to Distributed On-Site Learning and Beyond(综述)
A Survey on Federated Learning: The Journey From Centralized to Distributed On-Site Learning and Bey ...
- Federated Learning: Challenges, Methods, and Future Directions
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1908.07873v1 [cs.LG] 21 Aug 2019 Abstract 联邦学习包括通过远程设备或孤立的数据中心( ...
- 联邦学习(Federated Learning)
联邦学习简介 联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是 ...
- 联邦学习 Federated Learning 相关资料整理
本文链接:https://blog.csdn.net/Sinsa110/article/details/90697728代码微众银行+杨强教授团队的联邦学习FATE框架代码:https://githu ...
- Overcoming Forgetting in Federated Learning on Non-IID Data
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. NeurIPS 2019 Workshop on Federated Learning ...
- Reliable Federated Learning for Mobile Networks
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. arXiv: 1910.06837v1 [cs.CR] 14 Oct 2019 Abst ...
随机推荐
- 每天一道算法题-leetcode136-只出现一次的数字
前言 打卡第一天 2019.10.26日打卡 算法,即解决问题的方法.同一个问题,使用不同的算法,虽然得到的结果相同,但是耗费的时间和资源是不同的.这就需要我们学习算法,找出哪个算法更好. 大家都知道 ...
- 使用 Zephir 轻松构建 PHP 扩展
简介: 通过 PHP 扩展, 我们可以在 php 代码中使用一些特定的方法(大部分的 php 扩展都是用 C 写的). 比如,在 PHP 中需要与 SQLite3 交互,我们可以自己写方法与之进行连接 ...
- MySQL开发规范与使用技巧总结
命名规范 1.库名.表名.字段名必须使用小写字母,并采用下划线分割. a)MySQL有配置参数lower_case_table_names,不可动态更改,Linux系统默认为 0,即库表名以实际情况存 ...
- shell中tar加密打包
tar 打包是一个很常见的操作,但是当打了一个包却又不想让别人看到里面的小秘密的时候就可以使用加密的方法进行打包. 以下是一个脚本实现的加密打包和解密的shell脚本: cat tar_passwor ...
- nyoj 268-荷兰国旗问题 (count)
268-荷兰国旗问题 内存限制:64MB 时间限制:3000ms 特判: No 通过数:15 提交数:20 难度:1 题目描述: 荷兰国旗有三横条块构成,自上到下的三条块颜色依次为红.白.蓝.现有若干 ...
- 菜鸟手把手学Shiro之shiro认证流程
一.使用的spring boot +mybatis-plus+shiro+maven来搭建项目框架 <!--shiro--> <dependency> <groupId& ...
- Python爬虫的开始——requests库建立请求
接下来我将会用一段时间来更新python爬虫 网络爬虫大体可以分为三个步骤. 首先建立请求,爬取所需元素: 其次解析爬取信息,剔除无效数据: 最后将爬取信息进行保存: 今天就先来讲讲第一步,请求库re ...
- PostgreSQL各数据类型的内置函数
参考<PostgreSQL实战> 3.1.2 数字类型操作符和数学函数 PostgreSQL 支持数字类型操作符和丰富的数学函数 例如支持加.减.乘.除.模取取余操作符 SELECT 1+ ...
- JRE JDK JVM的区别
jdk>jre>jvm jdk是面向开发者具有编译功能: jre是面向用户的,主要是class文件的运行,假如我们只有编译好的class文件和jre,那么就可以运行class了. jvm是 ...
- P2415 集合求和(一道洛谷好题鸭)(虽然可以水过,但有必研究DP)
此题坑点: 结果必须要用long long存,int存不下 如果想要像cout<<sum*pow(2,num-1)这样在输出时计算会错:long long在计算过程被隐式转换成了doubl ...