In federated learning, multiple client devices jointly learn a machine learning model: each client device maintains a local model for its local training dataset, while a master device maintains a global model via aggregating the local models from the client devices. The machine learning community recently proposed several federated learning methods that were claimed to be robust against Byzantine failures (eg, system failures, adversarial manipulations) of certain client devices. In this work, we perform the first systematic study on local model poisoning attacks to federated learning. We assume an attacker has compromised some client devices, and the attacker manipulates the local model parameters on the compromised client devices during the learning process such that the global model has a large testing error rate. We formulate our attacks as optimization problems and apply our attacks to four recent Byzantine-robust federated learning methods. Our empirical results on four real-world datasets show that our attacks can substantially increase the error rates of the models learnt by the federated learning methods that were claimed to be robust against Byzantine failures of some client devices. We generalize two defenses for data poisoning attacks to defend against our local model poisoning attacks. Our evaluation results show that one defense can effectively defend against our attacks in some cases, but the defenses are not effective enough in other cases, highlighting the need for new defenses against our local model poisoning attacks to federated learning.

Local Model Poisoning Attacks to Byzantine-Robust Federated Learning的更多相关文章

  1. 【流行前沿】联邦学习 Partial Model Averaging in Federated Learning: Performance Guarantees and Benefits

    Sunwoo Lee, , Anit Kumar Sahu, Chaoyang He, and Salman Avestimehr. "Partial Model Averaging in ...

  2. 【论文笔记】A review of applications in federated learning(综述)

    A review of applications in federated learning Authors Li Li, Yuxi Fan, Mike Tse, Kuo-Yi Lin Keyword ...

  3. Advances and Open Problems in Federated Learning

    挖个大坑,等有空了再回来填.心心念念的大综述呀(吐血三升)! 郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 项目地址:https://github.com/open-intellige ...

  4. 【论文笔记】A Survey on Federated Learning: The Journey From Centralized to Distributed On-Site Learning and Beyond(综述)

    A Survey on Federated Learning: The Journey From Centralized to Distributed On-Site Learning and Bey ...

  5. Federated Learning: Challenges, Methods, and Future Directions

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1908.07873v1 [cs.LG] 21 Aug 2019 Abstract 联邦学习包括通过远程设备或孤立的数据中心( ...

  6. 联邦学习(Federated Learning)

    联邦学习简介        联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是 ...

  7. 联邦学习 Federated Learning 相关资料整理

    本文链接:https://blog.csdn.net/Sinsa110/article/details/90697728代码微众银行+杨强教授团队的联邦学习FATE框架代码:https://githu ...

  8. Overcoming Forgetting in Federated Learning on Non-IID Data

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. NeurIPS 2019 Workshop on Federated Learning ...

  9. Reliable Federated Learning for Mobile Networks

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. arXiv: 1910.06837v1 [cs.CR] 14 Oct 2019 Abst ...

随机推荐

  1. git push后出现错误 ![rejected] master -> master(non-fast-forward) error:failed to push some refs to 'XXX'

    本地创建了一个project并在GitHub上创建了一个仓库,想要将本地的仓库链接到远程仓库我用的是如下方法:git init    //初始化本地仓库git remote add origin XX ...

  2. 基于R数据分析之常用Package讲解系列--1. data.table

    利用data.table包变形数据 一. 基础概念 data.table 这种数据结构相较于R中本源的data.frame 在数据处理上有运算速度更快,内存运用更高效,可认为它是data.frame ...

  3. 力扣(LeetCode)寻找数组的中心索引 个人题解

    给定一个整数类型的数组 nums,请编写一个能够返回数组“中心索引”的方法. 我们是这样定义数组中心索引的:数组中心索引的左侧所有元素相加的和等于右侧所有元素相加的和. 如果数组不存在中心索引,那么我 ...

  4. Elasticsearch系列---分布式架构机制讲解

    概要 本篇主要介绍Elasticsearch的数据索引时的分片机制,集群发现机制,primary shard与replica shard是如何分工合作的,如何对集群扩容,以及集群的容错机制. 分片机制 ...

  5. PostGIS 存储过程返回类型

    Postgresql存储过程返回值的方式有很多,在此先只记录一下自己用到过的,慢慢拓展 1.type型,这里geometry可以是任何postgresql支持的类型(integer/text/char ...

  6. Java的内存分配机制

    Java程序运行在JVM(Java  Virtual Machine,Java虚拟机)上,可以把JVM理解成Java程序和操作系统之间的桥梁,JVM实现了Java的平台无关性,由此可 见JVM的重要性 ...

  7. 用Helm3构建多层微服务

    Helm是一款非常流行的k8s包管理工具.以前就一直想用它,但看到它产生的文件比k8s要复杂许多,就一直犹豫,不知道它的好处能不能抵消掉它的复杂度.但如果不用,而是用Kubectl来进行调式真的很麻烦 ...

  8. Java并发之synchronized关键字和Lock接口

    欢迎点赞阅读,一同学习交流,有疑问请留言 . GitHub上也有开源 JavaHouse,欢迎star 引用 当开发过程中,我们遇到并发问题.怎么解决? 一种解决方式,简单粗暴:上锁.将千军万马都给拦 ...

  9. Theano 更多示例

    Logistic函数 logistic函数的图,其中x在x轴上,s(x)在y轴上. 如果你想对双精度矩阵上的每个元素计算这个函数,这表示你想将这个函数应用到矩阵的每个元素上. 嗯,你是这样做的: x= ...

  10. Java8 Stream终端操作使用详解

    话不多说,自己挖的坑自己要填完,今天就给大家讲完Java8中Stream的终端操作使用详解.Stream流的终端操作主要有以下几种,我们来一一讲解. forEach() forEachOrdered( ...