ISODATA聚类算法的matlab程序

作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

参考:Kmeans及ISODATA算法的matlab实现

算法简介:聚类算法:ISODATA算法

数据见:MATLAB实例:PCA降维中的iris数据集,保存为:iris.data,最后一列是类标签。

demo_isodata.m

clear
clc
data_load=dlmread('iris.data');
[~,dim]=size(data_load);
x=data_load(:,1:dim-1);
K=3;
theta_N=1;
theta_S=1;
theta_c=4;
L=1;
I=5;
ISODATA(x,K,theta_N,theta_S,theta_c,L,I)

ISODATA.m

function ISODATA(x,K,theta_N,theta_S,theta_c,L,I)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%input parameters%%%%%%
% x : data
% K : 预期的聚类中心数
% theta_N : 每一聚类中心中最少的样本数,少于此数就不作为一个独立的聚类
% theta_S :一个聚类中样本距离分布的标准差
% theta_c : 两聚类中心之间的最小距离,如小于此数,两个聚类进行合并
% L : 在一次迭代运算中可以和并的聚类中心的最多对数
% I :迭代运算的次数序号
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% step1
n = size(x,1);
N_c = K;
mean = cell(K,1);
for i=1:K
mean{i} = x(i,:);
end
ite = 1;
while ite<I
flag = 1;
while flag
%% step2
class = cell(size(mean));
for i=1:n
num = Belong2(x(i,:),mean);
class{num} = [class{num};x(i,:)];
end
%% step3
for i=1:N_c
size_i = size(class{i},1);
if size_i<theta_N
class_i = class{i};
mean = DeleteRow(mean,i);
class = DeleteRow(class,i);
N_c = N_c-1;
for j=1:size_i
class_ij = class_i(j,:);%the j'th row of class{i}
num = Belong2(class_ij,mean);
class{num} = [class{num};class_ij];
end
end
end %% step4
for i=1:N_c
if ~isempty(mean{i})
mean{i} = sum(class{i})./size(class{i},1);
end
end
%% step5
Dis = zeros(N_c,1);
for i=1:N_c
if ~isempty(class{i})
N_i =size(class{i},1);
tmp = bsxfun(@minus,class{i},mean{i});
Dis(i) = sum(arrayfun(@(x)norm(tmp(x,:)),1:N_i))/N_i;
end
end
%% step6
D = 0;
for i=1:N_c
if ~isempty(class{i})
N_i =size(class{i},1);
D = D + N_i*Dis(i);
end
end
D = D/n;
%% step7
flag = 0;
if ite == I
theta_c = 0;
flag = 0;
elseif ~(N_c > K/2)
flag = 1;
elseif mod(ite,2)==0 || ~(N_c<2*K)
flag = 0;
end
%% 分裂处理
%% step8
if flag
flag = 0;
delta = cell(N_c,1);
for i=1:N_c
if ~isempty(class{i})
N_i =size(class{i},1);
tmp = bsxfun(@minus,class{i},mean{i});
delta{i} = arrayfun(@(x)norm(tmp(:,x)),1:size(tmp,2))/N_i;
end
end %% step9
delta_max = cell(N_c,1);
for i=1:N_c
if ~isempty(class{i})
max_i = max(delta{i});
sub = find(delta{i}==max_i,1);
delta_max{i} = [max_i,sub];
end
end
%% step10
for i=1:N_c
if delta_max{i}(1) > theta_S
N_i =size(class{i},1);
con1 = (Dis(i)>D && N_i>2*(theta_N + 1));
con2 = ~(N_c>K/2);
if con1 || con2
%%%%这里分裂%%%%%
flag = 1;%一旦发生分裂,那么分裂一次后就返回第二步;若没发生分裂,则直接进入合并处理步
lamda = 0.5;
max_sub = delta_max{i}(2);
mean{i}(max_sub) = mean{i}(max_sub) + lamda * delta_max{i}(1);
addOneMean = mean{i};
addOneMean(max_sub) = addOneMean(max_sub) - lamda * delta_max{i}(1);
mean = [mean;addOneMean];
N_c = N_c+1;
break;
end
end
end end end
%% 合并处理
if L
%% step11
Distance = zeros(N_c,N_c);
for i=1:N_c-1
for j=i:N_c
Distance(i,j) = norm(mean{i}-mean{j});
end
end
%% step12
index = find(-Distance>theta_c);
keepIndex = [Distance(index),index];
[~, index] = sort(keepIndex(:,1));
if size(index,1) > L
index = index(1:L,:);
end
%% step13
if size(index,1) ~= 0
for id=1:size(index,1)
[m_i m_j]= seq2idx(index(id),N_c);
%%%%%这里合并%%%%%
N_mi = size(class{m_i},1);
N_mj = size(class{m_j},1);
mean{m_i} = (N_mi*mean{m_i} + N_mj*mean{m_j})/(N_mi+N_mj);
mean = DeleteRow(mean,m_j);
class{m_i} = [class{m_i};class{m_j}];
class = DeleteRow(class,m_j);
end
end
end
%% step14
ite=ite+1;
end
for i=1:N_c
fprintf('第%d类聚类中心为\n',i);
disp(mean{i});
fprintf('第%d类中元素为\n',i);
disp(class{i});
end
end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function number = Belong2(x_i,means)
INF = 10000;
min = INF;
kk = size(means,1);
number = 1;
for i=1:kk
if ~isempty(means{i})
if norm(x_i - means{i}) < min
min = norm(x_i - means{i});
number = i;
end
end
end
end function A_del = DeleteRow(A,r)
n = size(A,1);
if r == 1
A_del = A(2:n,:);
elseif r == n
A_del = A(1:n-1,:);
else
A_del = [A(1:r-1,:);A(r+1:n,:)];
end
end function [row col] = seq2idx(id,n)
if mod(id,n)==0
row = n;
col = id/n;
else
row = mod(id,n);
col = ceil(id/n);
end
end

结果

>> demo_isodata
第1类聚类中心为
6.6016 2.9857 5.3841 1.9159 第1类中元素为
7.0000 3.2000 4.7000 1.4000
6.4000 3.2000 4.5000 1.5000
6.9000 3.1000 4.9000 1.5000
6.5000 2.8000 4.6000 1.5000
6.3000 3.3000 4.7000 1.6000
6.6000 2.9000 4.6000 1.3000
6.7000 3.1000 4.4000 1.4000
5.9000 3.2000 4.8000 1.8000
6.3000 2.5000 4.9000 1.5000
6.6000 3.0000 4.4000 1.4000
6.8000 2.8000 4.8000 1.4000
6.7000 3.0000 5.0000 1.7000
6.0000 2.7000 5.1000 1.6000
6.7000 3.1000 4.7000 1.5000
6.3000 3.3000 6.0000 2.5000
5.8000 2.7000 5.1000 1.9000
7.1000 3.0000 5.9000 2.1000
6.3000 2.9000 5.6000 1.8000
6.5000 3.0000 5.8000 2.2000
7.6000 3.0000 6.6000 2.1000
7.3000 2.9000 6.3000 1.8000
6.7000 2.5000 5.8000 1.8000
7.2000 3.6000 6.1000 2.5000
6.5000 3.2000 5.1000 2.0000
6.4000 2.7000 5.3000 1.9000
6.8000 3.0000 5.5000 2.1000
5.7000 2.5000 5.0000 2.0000
5.8000 2.8000 5.1000 2.4000
6.4000 3.2000 5.3000 2.3000
6.5000 3.0000 5.5000 1.8000
7.7000 3.8000 6.7000 2.2000
7.7000 2.6000 6.9000 2.3000
6.0000 2.2000 5.0000 1.5000
6.9000 3.2000 5.7000 2.3000
5.6000 2.8000 4.9000 2.0000
7.7000 2.8000 6.7000 2.0000
6.3000 2.7000 4.9000 1.8000
6.7000 3.3000 5.7000 2.1000
7.2000 3.2000 6.0000 1.8000
6.2000 2.8000 4.8000 1.8000
6.1000 3.0000 4.9000 1.8000
6.4000 2.8000 5.6000 2.1000
7.2000 3.0000 5.8000 1.6000
7.4000 2.8000 6.1000 1.9000
7.9000 3.8000 6.4000 2.0000
6.4000 2.8000 5.6000 2.2000
6.3000 2.8000 5.1000 1.5000
6.1000 2.6000 5.6000 1.4000
7.7000 3.0000 6.1000 2.3000
6.3000 3.4000 5.6000 2.4000
6.4000 3.1000 5.5000 1.8000
6.0000 3.0000 4.8000 1.8000
6.9000 3.1000 5.4000 2.1000
6.7000 3.1000 5.6000 2.4000
6.9000 3.1000 5.1000 2.3000
5.8000 2.7000 5.1000 1.9000
6.8000 3.2000 5.9000 2.3000
6.7000 3.3000 5.7000 2.5000
6.7000 3.0000 5.2000 2.3000
6.3000 2.5000 5.0000 1.9000
6.5000 3.0000 5.2000 2.0000
6.2000 3.4000 5.4000 2.3000
5.9000 3.0000 5.1000 1.8000 第2类聚类中心为
5.6838 2.6784 4.0919 1.2676 第2类中元素为
5.5000 2.3000 4.0000 1.3000
5.7000 2.8000 4.5000 1.3000
4.9000 2.4000 3.3000 1.0000
5.2000 2.7000 3.9000 1.4000
5.0000 2.0000 3.5000 1.0000
5.9000 3.0000 4.2000 1.5000
6.0000 2.2000 4.0000 1.0000
6.1000 2.9000 4.7000 1.4000
5.6000 2.9000 3.6000 1.3000
5.6000 3.0000 4.5000 1.5000
5.8000 2.7000 4.1000 1.0000
6.2000 2.2000 4.5000 1.5000
5.6000 2.5000 3.9000 1.1000
6.1000 2.8000 4.0000 1.3000
6.1000 2.8000 4.7000 1.2000
6.4000 2.9000 4.3000 1.3000
6.0000 2.9000 4.5000 1.5000
5.7000 2.6000 3.5000 1.0000
5.5000 2.4000 3.8000 1.1000
5.5000 2.4000 3.7000 1.0000
5.8000 2.7000 3.9000 1.2000
5.4000 3.0000 4.5000 1.5000
6.0000 3.4000 4.5000 1.6000
6.3000 2.3000 4.4000 1.3000
5.6000 3.0000 4.1000 1.3000
5.5000 2.5000 4.0000 1.3000
5.5000 2.6000 4.4000 1.2000
6.1000 3.0000 4.6000 1.4000
5.8000 2.6000 4.0000 1.2000
5.0000 2.3000 3.3000 1.0000
5.6000 2.7000 4.2000 1.3000
5.7000 3.0000 4.2000 1.2000
5.7000 2.9000 4.2000 1.3000
6.2000 2.9000 4.3000 1.3000
5.1000 2.5000 3.0000 1.1000
5.7000 2.8000 4.1000 1.3000
4.9000 2.5000 4.5000 1.7000 第3类聚类中心为
5.0060 3.4180 1.4640 0.2440 第3类中元素为
5.1000 3.5000 1.4000 0.2000
4.9000 3.0000 1.4000 0.2000
4.7000 3.2000 1.3000 0.2000
4.6000 3.1000 1.5000 0.2000
5.0000 3.6000 1.4000 0.2000
5.4000 3.9000 1.7000 0.4000
4.6000 3.4000 1.4000 0.3000
5.0000 3.4000 1.5000 0.2000
4.4000 2.9000 1.4000 0.2000
4.9000 3.1000 1.5000 0.1000
5.4000 3.7000 1.5000 0.2000
4.8000 3.4000 1.6000 0.2000
4.8000 3.0000 1.4000 0.1000
4.3000 3.0000 1.1000 0.1000
5.8000 4.0000 1.2000 0.2000
5.7000 4.4000 1.5000 0.4000
5.4000 3.9000 1.3000 0.4000
5.1000 3.5000 1.4000 0.3000
5.7000 3.8000 1.7000 0.3000
5.1000 3.8000 1.5000 0.3000
5.4000 3.4000 1.7000 0.2000
5.1000 3.7000 1.5000 0.4000
4.6000 3.6000 1.0000 0.2000
5.1000 3.3000 1.7000 0.5000
4.8000 3.4000 1.9000 0.2000
5.0000 3.0000 1.6000 0.2000
5.0000 3.4000 1.6000 0.4000
5.2000 3.5000 1.5000 0.2000
5.2000 3.4000 1.4000 0.2000
4.7000 3.2000 1.6000 0.2000
4.8000 3.1000 1.6000 0.2000
5.4000 3.4000 1.5000 0.4000
5.2000 4.1000 1.5000 0.1000
5.5000 4.2000 1.4000 0.2000
4.9000 3.1000 1.5000 0.1000
5.0000 3.2000 1.2000 0.2000
5.5000 3.5000 1.3000 0.2000
4.9000 3.1000 1.5000 0.1000
4.4000 3.0000 1.3000 0.2000
5.1000 3.4000 1.5000 0.2000
5.0000 3.5000 1.3000 0.3000
4.5000 2.3000 1.3000 0.3000
4.4000 3.2000 1.3000 0.2000
5.0000 3.5000 1.6000 0.6000
5.1000 3.8000 1.9000 0.4000
4.8000 3.0000 1.4000 0.3000
5.1000 3.8000 1.6000 0.2000
4.6000 3.2000 1.4000 0.2000
5.3000 3.7000 1.5000 0.2000
5.0000 3.3000 1.4000 0.2000

2019-10-10 16:10:14

ISODATA聚类算法的matlab程序的更多相关文章

  1. canopy聚类算法的MATLAB程序

    canopy聚类算法的MATLAB程序 凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. canopy聚类算法简介 Canopy聚类算法是一个将对象分组到 ...

  2. mean shift聚类算法的MATLAB程序

    mean shift聚类算法的MATLAB程序 凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. mean shift 简介 mean shift, 写的 ...

  3. KFCM算法的matlab程序(用FCM初始化聚类中心)

    KFCM算法的matlab程序(用FCM初始化聚类中心) 在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行实现,用FCM初始化聚类中心,并求其准确度与 ...

  4. GMM算法的matlab程序

    GMM算法的matlab程序 在“GMM算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 - 博客园 h ...

  5. GMM算法的matlab程序(初步)

    GMM算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648508.html文章中已经介绍了GMM算法,现在用matlab程序实现它. 作者:凯鲁嘎 ...

  6. 聚类——GAKFCM的matlab程序

    聚类——GAKFCM的matlab程序 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 在聚类——GAKFCM文章中已介绍了GAKFCM算法的理论知识, ...

  7. 聚类——WKFCM的matlab程序

    聚类——WKFCM的matlab程序 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 在聚类——WKFCM文章中已介绍了WKFCM算法的理论知识,现在用 ...

  8. 聚类——KFCM的matlab程序

    聚类——KFCM的matlab程序 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 在聚类——KFCM文章中已介绍了KFCM-F算法的理论知识,现在用m ...

  9. 聚类——FCM的matlab程序

    聚类——FCM的matlab程序 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 在聚类——FCM文章中已介绍了FCM算法的理论知识,现在用matlab ...

随机推荐

  1. git 配置本地用户名称 和 邮件名称

    很多次配置git用户名和邮箱了,总是会忘记,然后在网络上搜索,今天进行记录下来,防止遗忘: # 查看用户名和邮箱地址git config user.name git config user.email ...

  2. 渗透测试学习 二十九、kali安装,信息搜集,服务器扫描

    kali安装,信息搜集,服务器扫描 kali介绍 Kali Linux是基于Debian的Linux发行版, 设计用于数字取证操作系统.由Offensive Security Ltd维护和资助.最先由 ...

  3. s3c2440裸机-时钟编程(一、2440时钟体系介绍)

    1.总线框架 下图是2440的总线框架,其中有AHB(Advanced High performance Bus)高速总线,APB(Advanced Peripheral Bus)外围总线. 不同总线 ...

  4. TensorFlow从1到2(十五)(完结)在浏览器做机器学习

    TensorFlow的Javascript版 TensorFlow一直努力扩展自己的基础平台环境,除了熟悉的Python,当前的TensorFlow还实现了支持Javascript/C++/Java/ ...

  5. 【poj1430】Binary Stirling Numbers(斯特林数+组合数)

    传送门 题意: 求\(S(n,m)\% 2\)的值,\(n,m\leq 10^9\),其中\(S(n,m)\)是指第二类斯特林数. 思路: 因为只需要关注奇偶性,所以递推式可以写为: 若\(m\)为偶 ...

  6. java 通过Qrcode生成二维码添加图片logo和文字描述

    /** * 二维码创建 * @author yhzm * */ public class printServiceImpl extends BaseService { public void barC ...

  7. 记MacOs视频mov与mp4格式转换问题解决

    综述 记录了mov转mp4格式的方法 记录了自己是多蠢 问题背景 这学期选修的<工程英语视听说>课,需要提交一段口语考试视频,于是乎: 带着我的大疆Mavic Mini 和iPad Pro ...

  8. 数据库导出--Oracle-dmp格式

    expdp 数据库名/数据库密码@orcl directory=backdir dumpfile=导出文件名称.dmp 例: expdp bedManager_nt/123456@orcl direc ...

  9. Windows下同时安装python2和python3如何兼容版本

    引言:因学习需要把python2和python3都安装了,为了避免使用过程中混淆版本在网上找了一些解决方案,亲测可用.方法如下: 分别下载并安装Python2.x和Python3.x. 配置环境变量. ...

  10. Python爬虫教程-实现百度翻译

    使用python爬虫实现百度翻译功能python爬虫实现百度翻译: python解释器[模拟浏览器],发送[post请求],传入待[翻译的内容]作为参数,获取[百度翻译的结果] 通过开发者工具,获取发 ...