一、Storm集成HDFS

1.1 项目结构

本用例源码下载地址:storm-hdfs-integration

1.2 项目主要依赖

项目主要依赖如下,有两个地方需要注意:

  • 这里由于我服务器上安装的是 CDH 版本的 Hadoop,在导入依赖时引入的也是 CDH 版本的依赖,需要使用 <repository> 标签指定 CDH 的仓库地址;
  • hadoop-commonhadoop-clienthadoop-hdfs 均需要排除 slf4j-log4j12 依赖,原因是 storm-core 中已经有该依赖,不排除的话有 JAR 包冲突的风险;
<properties>
    <storm.version>1.2.2</storm.version>
</properties>

<repositories>
    <repository>
        <id>cloudera</id>
        <url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
    </repository>
</repositories>

<dependencies>
    <dependency>
        <groupId>org.apache.storm</groupId>
        <artifactId>storm-core</artifactId>
        <version>${storm.version}</version>
    </dependency>
    <!--Storm 整合 HDFS 依赖-->
    <dependency>
        <groupId>org.apache.storm</groupId>
        <artifactId>storm-hdfs</artifactId>
        <version>${storm.version}</version>
    </dependency>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-common</artifactId>
        <version>2.6.0-cdh5.15.2</version>
        <exclusions>
            <exclusion>
                <groupId>org.slf4j</groupId>
                <artifactId>slf4j-log4j12</artifactId>
            </exclusion>
        </exclusions>
    </dependency>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-client</artifactId>
        <version>2.6.0-cdh5.15.2</version>
        <exclusions>
            <exclusion>
                <groupId>org.slf4j</groupId>
                <artifactId>slf4j-log4j12</artifactId>
            </exclusion>
        </exclusions>
    </dependency>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-hdfs</artifactId>
        <version>2.6.0-cdh5.15.2</version>
        <exclusions>
            <exclusion>
                <groupId>org.slf4j</groupId>
                <artifactId>slf4j-log4j12</artifactId>
            </exclusion>
        </exclusions>
    </dependency>
</dependencies>

1.3 DataSourceSpout

/**
 * 产生词频样本的数据源
 */
public class DataSourceSpout extends BaseRichSpout {

    private List<String> list = Arrays.asList("Spark", "Hadoop", "HBase", "Storm", "Flink", "Hive");

    private SpoutOutputCollector spoutOutputCollector;

    @Override
    public void open(Map map, TopologyContext topologyContext, SpoutOutputCollector spoutOutputCollector) {
        this.spoutOutputCollector = spoutOutputCollector;
    }

    @Override
    public void nextTuple() {
        // 模拟产生数据
        String lineData = productData();
        spoutOutputCollector.emit(new Values(lineData));
        Utils.sleep(1000);
    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
        outputFieldsDeclarer.declare(new Fields("line"));
    }

    /**
     * 模拟数据
     */
    private String productData() {
        Collections.shuffle(list);
        Random random = new Random();
        int endIndex = random.nextInt(list.size()) % (list.size()) + 1;
        return StringUtils.join(list.toArray(), "\t", 0, endIndex);
    }

}

产生的模拟数据格式如下:

Spark   HBase
Hive    Flink   Storm   Hadoop  HBase   Spark
Flink
HBase   Storm
HBase   Hadoop  Hive    Flink
HBase   Flink   Hive    Storm
Hive    Flink   Hadoop
HBase   Hive
Hadoop  Spark   HBase   Storm

1.4 将数据存储到HDFS

这里 HDFS 的地址和数据存储路径均使用了硬编码,在实际开发中可以通过外部传参指定,这样程序更为灵活。

public class DataToHdfsApp {

    private static final String DATA_SOURCE_SPOUT = "dataSourceSpout";
    private static final String HDFS_BOLT = "hdfsBolt";

    public static void main(String[] args) {

        // 指定 Hadoop 的用户名 如果不指定,则在 HDFS 创建目录时候有可能抛出无权限的异常 (RemoteException: Permission denied)
        System.setProperty("HADOOP_USER_NAME", "root");

        // 定义输出字段 (Field) 之间的分隔符
        RecordFormat format = new DelimitedRecordFormat()
                .withFieldDelimiter("|");

        // 同步策略: 每 100 个 tuples 之后就会把数据从缓存刷新到 HDFS 中
        SyncPolicy syncPolicy = new CountSyncPolicy(100);

        // 文件策略: 每个文件大小上限 1M,超过限定时,创建新文件并继续写入
        FileRotationPolicy rotationPolicy = new FileSizeRotationPolicy(1.0f, Units.MB);

        // 定义存储路径
        FileNameFormat fileNameFormat = new DefaultFileNameFormat()
                .withPath("/storm-hdfs/");

        // 定义 HdfsBolt
        HdfsBolt hdfsBolt = new HdfsBolt()
                .withFsUrl("hdfs://hadoop001:8020")
                .withFileNameFormat(fileNameFormat)
                .withRecordFormat(format)
                .withRotationPolicy(rotationPolicy)
                .withSyncPolicy(syncPolicy);

        // 构建 Topology
        TopologyBuilder builder = new TopologyBuilder();
        builder.setSpout(DATA_SOURCE_SPOUT, new DataSourceSpout());
        // save to HDFS
        builder.setBolt(HDFS_BOLT, hdfsBolt, 1).shuffleGrouping(DATA_SOURCE_SPOUT);

        // 如果外部传参 cluster 则代表线上环境启动,否则代表本地启动
        if (args.length > 0 && args[0].equals("cluster")) {
            try {
                StormSubmitter.submitTopology("ClusterDataToHdfsApp", new Config(), builder.createTopology());
            } catch (AlreadyAliveException | InvalidTopologyException | AuthorizationException e) {
                e.printStackTrace();
            }
        } else {
            LocalCluster cluster = new LocalCluster();
            cluster.submitTopology("LocalDataToHdfsApp",
                    new Config(), builder.createTopology());
        }
    }
}

1.5 启动测试

可以用直接使用本地模式运行,也可以打包后提交到服务器集群运行。本仓库提供的源码默认采用 maven-shade-plugin 进行打包,打包命令如下:

# mvn clean package -D maven.test.skip=true

运行后,数据会存储到 HDFS 的 /storm-hdfs 目录下。使用以下命令可以查看目录内容:

# 查看目录内容
hadoop fs -ls /storm-hdfs
# 监听文内容变化
hadoop fs -tail -f /strom-hdfs/文件名

二、Storm集成HBase

2.1 项目结构

集成用例: 进行词频统计并将最后的结果存储到 HBase,项目主要结构如下:

本用例源码下载地址:storm-hbase-integration

2.2 项目主要依赖

 <properties>
        <storm.version>1.2.2</storm.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.storm</groupId>
            <artifactId>storm-core</artifactId>
            <version>${storm.version}</version>
        </dependency>
        <!--Storm 整合 HBase 依赖-->
        <dependency>
            <groupId>org.apache.storm</groupId>
            <artifactId>storm-hbase</artifactId>
            <version>${storm.version}</version>
        </dependency>
    </dependencies>

2.3 DataSourceSpout

/**
 * 产生词频样本的数据源
 */
public class DataSourceSpout extends BaseRichSpout {

    private List<String> list = Arrays.asList("Spark", "Hadoop", "HBase", "Storm", "Flink", "Hive");

    private SpoutOutputCollector spoutOutputCollector;

    @Override
    public void open(Map map, TopologyContext topologyContext, SpoutOutputCollector spoutOutputCollector) {
        this.spoutOutputCollector = spoutOutputCollector;
    }

    @Override
    public void nextTuple() {
        // 模拟产生数据
        String lineData = productData();
        spoutOutputCollector.emit(new Values(lineData));
        Utils.sleep(1000);
    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
        outputFieldsDeclarer.declare(new Fields("line"));
    }

    /**
     * 模拟数据
     */
    private String productData() {
        Collections.shuffle(list);
        Random random = new Random();
        int endIndex = random.nextInt(list.size()) % (list.size()) + 1;
        return StringUtils.join(list.toArray(), "\t", 0, endIndex);
    }

}

产生的模拟数据格式如下:

Spark   HBase
Hive    Flink   Storm   Hadoop  HBase   Spark
Flink
HBase   Storm
HBase   Hadoop  Hive    Flink
HBase   Flink   Hive    Storm
Hive    Flink   Hadoop
HBase   Hive
Hadoop  Spark   HBase   Storm

2.4 SplitBolt

/**
 * 将每行数据按照指定分隔符进行拆分
 */
public class SplitBolt extends BaseRichBolt {

    private OutputCollector collector;

    @Override
    public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
        this.collector = collector;
    }

    @Override
    public void execute(Tuple input) {
        String line = input.getStringByField("line");
        String[] words = line.split("\t");
        for (String word : words) {
            collector.emit(tuple(word, 1));
        }
    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        declarer.declare(new Fields("word", "count"));
    }
}

2.5 CountBolt

/**
 * 进行词频统计
 */
public class CountBolt extends BaseRichBolt {

    private Map<String, Integer> counts = new HashMap<>();

    private OutputCollector collector;

    @Override
    public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
            this.collector=collector;
    }

    @Override
    public void execute(Tuple input) {
        String word = input.getStringByField("word");
        Integer count = counts.get(word);
        if (count == null) {
            count = 0;
        }
        count++;
        counts.put(word, count);
        // 输出
        collector.emit(new Values(word, String.valueOf(count)));

    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        declarer.declare(new Fields("word", "count"));
    }
}

2.6 WordCountToHBaseApp

/**
 * 进行词频统计 并将统计结果存储到 HBase 中
 */
public class WordCountToHBaseApp {

    private static final String DATA_SOURCE_SPOUT = "dataSourceSpout";
    private static final String SPLIT_BOLT = "splitBolt";
    private static final String COUNT_BOLT = "countBolt";
    private static final String HBASE_BOLT = "hbaseBolt";

    public static void main(String[] args) {

        // storm 的配置
        Config config = new Config();

        // HBase 的配置
        Map<String, Object> hbConf = new HashMap<>();
        hbConf.put("hbase.rootdir", "hdfs://hadoop001:8020/hbase");
        hbConf.put("hbase.zookeeper.quorum", "hadoop001:2181");

        // 将 HBase 的配置传入 Storm 的配置中
        config.put("hbase.conf", hbConf);

        // 定义流数据与 HBase 中数据的映射
        SimpleHBaseMapper mapper = new SimpleHBaseMapper()
                .withRowKeyField("word")
                .withColumnFields(new Fields("word","count"))
                .withColumnFamily("info");

        /*
         * 给 HBaseBolt 传入表名、数据映射关系、和 HBase 的配置信息
         * 表需要预先创建: create 'WordCount','info'
         */
        HBaseBolt hbase = new HBaseBolt("WordCount", mapper)
                .withConfigKey("hbase.conf");

        // 构建 Topology
        TopologyBuilder builder = new TopologyBuilder();
        builder.setSpout(DATA_SOURCE_SPOUT, new DataSourceSpout(),1);
        // split
        builder.setBolt(SPLIT_BOLT, new SplitBolt(), 1).shuffleGrouping(DATA_SOURCE_SPOUT);
        // count
        builder.setBolt(COUNT_BOLT, new CountBolt(),1).shuffleGrouping(SPLIT_BOLT);
        // save to HBase
        builder.setBolt(HBASE_BOLT, hbase, 1).shuffleGrouping(COUNT_BOLT);

        // 如果外部传参 cluster 则代表线上环境启动,否则代表本地启动
        if (args.length > 0 && args[0].equals("cluster")) {
            try {
                StormSubmitter.submitTopology("ClusterWordCountToRedisApp", config, builder.createTopology());
            } catch (AlreadyAliveException | InvalidTopologyException | AuthorizationException e) {
                e.printStackTrace();
            }
        } else {
            LocalCluster cluster = new LocalCluster();
            cluster.submitTopology("LocalWordCountToRedisApp",
                    config, builder.createTopology());
        }
    }
}

2.7 启动测试

可以用直接使用本地模式运行,也可以打包后提交到服务器集群运行。本仓库提供的源码默认采用 maven-shade-plugin 进行打包,打包命令如下:

# mvn clean package -D maven.test.skip=true

运行后,数据会存储到 HBase 的 WordCount 表中。使用以下命令查看表的内容:

hbase >  scan 'WordCount'

2.8 withCounterFields

在上面的用例中我们是手动编码来实现词频统计,并将最后的结果存储到 HBase 中。其实也可以在构建 SimpleHBaseMapper 的时候通过 withCounterFields 指定 count 字段,被指定的字段会自动进行累加操作,这样也可以实现词频统计。需要注意的是 withCounterFields 指定的字段必须是 Long 类型,不能是 String 类型。

SimpleHBaseMapper mapper = new SimpleHBaseMapper()
        .withRowKeyField("word")
        .withColumnFields(new Fields("word"))
        .withCounterFields(new Fields("count"))
        .withColumnFamily("cf");

参考资料

  1. Apache HDFS Integration
  2. Apache HBase Integration

更多大数据系列文章可以参见 GitHub 开源项目大数据入门指南

Storm 系列(八)—— Storm 集成 HDFS 和 HBase的更多相关文章

  1. Storm 学习之路(八)—— Storm集成HDFS和HBase

    一.Storm集成HDFS 1.1 项目结构 本用例源码下载地址:storm-hdfs-integration 1.2 项目主要依赖 项目主要依赖如下,有两个地方需要注意: 这里由于我服务器上安装的是 ...

  2. Storm系列一: Storm初步

    初入Storm 前言 学习Storm已经有两周左右的时间,但是认真来说学习过程确实是零零散散,遇到问题去百度一下,找到新概念再次学习,在这样的一个循环又不成体系的过程中不断学习Storm. 前人栽树, ...

  3. Storm系列之一——Storm Topology并发

    1.是什么构成一个可运行的topology? worker processes(worker进程),executors(线程)和tasks. 一台Storm集群里面的机器可能运行一个或多个worker ...

  4. Spring Boot系列 八、集成Kafka

    一.引入依赖 <dependency> <groupId>org.springframework.kafka</groupId> <artifactId> ...

  5. Storm 系列(七)—— Storm 集成 Redis 详解

    一.简介 Storm-Redis 提供了 Storm 与 Redis 的集成支持,你只需要引入对应的依赖即可使用: <dependency> <groupId>org.apac ...

  6. Storm 系列(二)实时平台介绍

    Storm 系列(二)实时平台介绍 本章中的实时平台是指针对大数据进行实时分析的一整套系统,包括数据的收集.处理.存储等.一般而言,大数据有 4 个特点: Volumn(大量). Velocity(高 ...

  7. Storm 系列(一)基本概念

    Storm 系列(一)基本概念 Apache Storm(http://storm.apache.org/)是由 Twitter 开源的分布式实时计算系统. Storm 可以非常容易并且可靠地处理无限 ...

  8. Storm 系列(六)—— Storm 项目三种打包方式对比分析

    一.简介 在将 Storm Topology 提交到服务器集群运行时,需要先将项目进行打包.本文主要对比分析各种打包方式,并将打包过程中需要注意的事项进行说明.主要打包方式有以下三种: 第一种:不加任 ...

  9. Storm 系列(五)—— Storm 编程模型详解

    一.简介 下图为 Strom 的运行流程图,在开发 Storm 流处理程序时,我们需要采用内置或自定义实现 spout(数据源) 和 bolt(处理单元),并通过 TopologyBuilder 将它 ...

随机推荐

  1. C++ 过滤出字符串的中文(GBK,UTF-8)

    最近在处理游戏敏感词之类的东西,为了加强屏蔽处理,所以需要过滤掉字符串中的除汉字之外的是其他东西如数字,符号,英文字母等. 首先我查阅资料并写了个函数: 示例:返回输入字符串中汉字的个数: std:: ...

  2. STL map 详细用法

    Map是STL的一个关联容器,它提供一对一(其中第一个可以称为关键字,每个关键字只能在map中出现一次,第二个称为该关键字的值)的数据 处理能力. 需要的库 #include <map> ...

  3. UPC Contest RankList – 2019年第二阶段我要变强个人训练赛第十五场

    传送门 A: Colorful Subsequence •题意 给一个长为n的小写字母序列,从中选出字母组成子序列 问最多能组成多少种每个字母都不相同的子序列 (不同位置的相同字母也算是不同的一种) ...

  4. web设计_4_可扩展的行

    不要指定横向页面组件的高度,要让它们能够在纵向自由扩展. 常见的包含文章正文或大段文字的区域,应该适应任何篇幅和大小的文字. 但是例如文章标题.登陆信息栏等也要考虑文字内容数量及高度的变化. 例如:下 ...

  5. context创建过程解析(一)之deployDescriptors

    总结:主要是创建Context对象,并且将默认context配置,host级别配置,context配置的值设置进去,设置docBase,如果是war包就解压到webapp的目录中,重新设置docBas ...

  6. RFC 2544 性能测试

    什么是RFC 2544?网络设备性能测试的一组指标,包括吞吐率.时延.丢包率.背靠背. * * * 吞吐率(Throughput). 定义:被测设备在不丢包的情况下,所能转发的最大数据流量.通常使用每 ...

  7. 19.包 logging 的使用

    包 什么是包: ---文件夹下具有__init__.py文件就是一个包 推荐使用 from . import 包的导入; from ss.bake.api.policy import func --- ...

  8. git开发流程

    典型的工作流程和做法是,由于你没有远程仓库的权限,你先在github通过fork,复制自己的一份远程仓库,然后通过clone你自己这个远程副本到本地,进行修改,修改后push到自己的githu远程副本 ...

  9. Java模拟并解决缓存穿透

    什么叫做缓存穿透 缓存穿透只会发生在高并发的时候,就是当有10000个并发进行查询数据的时候,我们一般都会先去redis里面查询进行数据,但是如果redis里面没有这个数据的时候,那么这10000个并 ...

  10. 数据结构之队列java版

    //java由于泛型的擦除,用起来十分不方便 abstract class BaseQueue<T>{ abstract boolean enQueue(T x); abstract T ...