java多线程之创建线程的4种方式及Future
Java使用Thread类代表线程,所有的线程对象都必须是Thread类或其子类的实例。Java可以用四种方式来创建线程:
- 继承Thread创建线程
- 实现Runnable接口创建线程
- 实现callable接口实现线程
- 使用线程池Executor创建线程
1.继承Thread实现线程
我们先来看一下Thread的源码,它是一个类,同样也实现了Runnable接口
public
class Thread implements Runnable {
/* Make sure registerNatives is the first thing <clinit> does. */
private static native void registerNatives();
static {
registerNatives();
} private volatile String name;
private int priority;
private Thread threadQ;
private long eetop; /* Whether or not to single_step this thread. */
private boolean single_step; /* Whether or not the thread is a daemon thread. */
private boolean daemon = false; /* JVM state */
private boolean stillborn = false; /* What will be run. */
private Runnable target; /* The group of this thread */
private ThreadGroup group; /* The context ClassLoader for this thread */
private ClassLoader contextClassLoader; /* The inherited AccessControlContext of this thread */
private AccessControlContext inheritedAccessControlContext; /* For autonumbering anonymous threads. */
private static int threadInitNumber;
private static synchronized int nextThreadNum() {
return threadInitNumber++;
} /* ThreadLocal values pertaining to this thread. This map is maintained
* by the ThreadLocal class. */
ThreadLocal.ThreadLocalMap threadLocals = null; /*
* InheritableThreadLocal values pertaining to this thread. This map is
* maintained by the InheritableThreadLocal class.
*/
ThreadLocal.ThreadLocalMap inheritableThreadLocals = null; /*
* The requested stack size for this thread, or 0 if the creator did
* not specify a stack size. It is up to the VM to do whatever it
* likes with this number; some VMs will ignore it.
*/
private long stackSize; /*
* JVM-private state that persists after native thread termination.
*/
private long nativeParkEventPointer; /*
* Thread ID
*/
private long tid; /* For generating thread ID */
private static long threadSeqNumber; /* Java thread status for tools,
* initialized to indicate thread 'not yet started'
*/ private volatile int threadStatus = 0; //...... }
通过继承Thread类来创建并启动多线程的一般步骤如下
- 1】d定义Thread类的子类,并重写该类的run()方法,该方法的方法体就是线程需要完成的任务,run()方法也称为线程执行体。
- 2】创建Thread子类的实例,也就是创建了线程对象
- 3】启动线程,即调用线程的start()方法
代码示例:
public class ThreadTest { public static void main(String[] args) {
new MyThread().start();
} static class MyThread extends Thread {//继承Thread
public void run() {
System.out.println("我是继承Thread类!! ");
}
} }
2.实现Runnable接口创建线程
我们来看一下Runnable的源码,它是一个接口:
@FunctionalInterface
public interface Runnable {
/**
* When an object implementing interface <code>Runnable</code> is used
* to create a thread, starting the thread causes the object's
* <code>run</code> method to be called in that separately executing
* thread.
* <p>
* The general contract of the method <code>run</code> is that it may
* take any action whatsoever.
*
* @see java.lang.Thread#run()
*/
public abstract void run();
}
由于run()方法返回值为void类型,所以在执行完任务之后无法返回任何结果。 通过实现Runnable接口创建并启动线程一般步骤如下:
- 1】定义Runnable接口的实现类,一样要重写run()方法,这个run()方法和Thread中的run()方法一样是线程的执行体
- 2】创建Runnable实现类的实例,并用这个实例作为Thread的target来创建Thread对象,这个Thread对象才是真正的线程对象
- 3】第三部依然是通过调用线程对象的start()方法来启动线程
代码示例:
public class RunnableTest { public static void main(String[] args) {
MyThread2 myThread=new MyThread2();
Thread thread = new Thread(myThread);
thread.start();
} static class MyThread2 implements Runnable {
@Override
public void run() {
System.out.println("我是实现Runnable接口!! ");
}
}
}
3.实现callable接口实现线程
我们来看一下callable源码,它是一个接口:
@FunctionalInterface
public interface Callable<V> {
/**
* Computes a result, or throws an exception if unable to do so.
*
* @return computed result
* @throws Exception if unable to compute a result
*/
V call() throws Exception;
}
它和Runnable接口不一样的是,call()方法提供了2个额外功能:
- call()方法可以有返回值
- all()方法可以声明抛出异常
java5提供了Future接口来代表Callable接口里call()方法的返回值,并且为Future接口提供了一个实现类FutureTask,这个实现类既实现了Future接口,还实现了Runnable接口,因此可以作为Thread类的target。在Future接口里定义了几个公共方法来控制它关联的Callable任务。
那么怎么使用Callable呢?一般情况下是配合ExecutorService来使用的,在ExecutorService接口中声明了若干个submit方法的重载版本:
<T> Future<T> submit(Callable<T> task);
<T> Future<T> submit(Runnable task, T result);
Future<?> submit(Runnable task);
第一个submit方法里面的参数类型就是Callable。
暂时只需要知道Callable一般是和ExecutorService配合来使用的,具体的使用方法讲在后面讲述。
一般情况下我们使用第一个submit方法和第三个submit方法,第二个submit方法很少使用。
3.1 Future
我们来看一下Future的源码,它是一个接口:
public interface Future<V> { /**
* Attempts to cancel execution of this task. This attempt will
* fail if the task has already completed, has already been cancelled,
* or could not be cancelled for some other reason. If successful,
* and this task has not started when {@code cancel} is called,
* this task should never run. If the task has already started,
* then the {@code mayInterruptIfRunning} parameter determines
* whether the thread executing this task should be interrupted in
* an attempt to stop the task.
*
* <p>After this method returns, subsequent calls to {@link #isDone} will
* always return {@code true}. Subsequent calls to {@link #isCancelled}
* will always return {@code true} if this method returned {@code true}.
*
* @param mayInterruptIfRunning {@code true} if the thread executing this
* task should be interrupted; otherwise, in-progress tasks are allowed
* to complete
* @return {@code false} if the task could not be cancelled,
* typically because it has already completed normally;
* {@code true} otherwise
*/
boolean cancel(boolean mayInterruptIfRunning); /**
* Returns {@code true} if this task was cancelled before it completed
* normally.
*
* @return {@code true} if this task was cancelled before it completed
*/
boolean isCancelled(); /**
* Returns {@code true} if this task completed.
*
* Completion may be due to normal termination, an exception, or
* cancellation -- in all of these cases, this method will return
* {@code true}.
*
* @return {@code true} if this task completed
*/
boolean isDone(); /**
* Waits if necessary for the computation to complete, and then
* retrieves its result.
*
* @return the computed result
* @throws CancellationException if the computation was cancelled
* @throws ExecutionException if the computation threw an
* exception
* @throws InterruptedException if the current thread was interrupted
* while waiting
*/
V get() throws InterruptedException, ExecutionException; /**
* Waits if necessary for at most the given time for the computation
* to complete, and then retrieves its result, if available.
*
* @param timeout the maximum time to wait
* @param unit the time unit of the timeout argument
* @return the computed result
* @throws CancellationException if the computation was cancelled
* @throws ExecutionException if the computation threw an
* exception
* @throws InterruptedException if the current thread was interrupted
* while waiting
* @throws TimeoutException if the wait timed out
*/
V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
}
我们来看一下它的各个方法:
- boolean cancel(boolean mayInterruptIfRunning):用来取消任务,如果取消任务成功则返回true,如果取消任务失败则返回false。参数mayInterruptIfRunning表示是否允许取消正在执行却没有执行完毕的任务,如果设置true,则表示可以取消正在执行过程中的任务。如果任务已经完成,则无论mayInterruptIfRunning为true还是false,此方法肯定返回false,即如果取消已经完成的任务会返回false;如果任务正在执行,若mayInterruptIfRunning设置为true,则返回true,若mayInterruptIfRunning设置为false,则返回false;如果任务还没有执行,则无论mayInterruptIfRunning为true还是false,肯定返回true。
boolean isCancelled():如果在Callable任务正常完成前被取消,返回True
boolean isDone():若Callable任务完成,返回True
V get() throws InterruptedException, ExecutionException:返回Callable里call()方法的返回值,调用这个方法会导致程序阻塞,必须等到子线程结束后才会得到返回值
V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException:用来获取执行结果,如果在指定时间内,还没获取到结果,就直接返回null
因为Future只是一个接口,所以是无法直接用来创建对象使用的,因此就有了下面的FutureTask
3.2 FutureTask
我们先来看一下FutureTask的实现:
public class FutureTask<V> implements RunnableFuture<V> {
FutureTask类实现了RunnableFuture接口,我们看一下RunnableFuture接口的实现:
public interface RunnableFuture<V> extends Runnable, Future<V> {
/**
* Sets this Future to the result of its computation
* unless it has been cancelled.
*/
void run();
}
可以看出RunnableFuture继承了Runnable接口和Future接口,而FutureTask实现了RunnableFuture接口。所以它既可以作为Runnable被线程执行,又可以作为Future得到Callable的返回值。
FutureTask提供了2个构造器:
public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW; // ensure visibility of callable
}
public FutureTask(Runnable runnable, V result) {
this.callable = Executors.callable(runnable, result);
this.state = NEW; // ensure visibility of callable
}
事实上,FutureTask是Future接口的一个唯一实现类。
3.3 使用FutureTask对象作为Thread对象的target创建并启动线程
接下来我们看如何创建并启动有返回值的线程:
- 1】创建Callable接口的实现类,并实现call()方法,然后创建该实现类的实例(从java8开始可以直接使用Lambda表达式创建Callable对象)。
- 2】使用FutureTask类来包装Callable对象,该FutureTask对象封装了Callable对象的call()方法的返回值
- 3】使用FutureTask对象作为Thread对象的target创建并启动线程(因为FutureTask实现了Runnable接口)
- 4】调用FutureTask对象的get()方法来获得子线程执行结束后的返回值
代码示例:
public class CallableAndFuture {
public static void main(String[] args) { Callable<Integer> call = new Callable<Integer>() {
public Integer call() throws Exception {
System.out.println("计算线程正在计算结果...");
Thread.sleep(3000);
return 1;
}
};
FutureTask<Integer> future = new FutureTask<>(call); new Thread(future,"有返回值的线程").start();//实质上还是以Callable对象来创建并启动线程 try {
System.out.println("子线程的返回值:" + future.get());//get()方法会阻塞,直到子线程执行结束才返回
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
} }
}
3.4 使用executor创建线程
3.4.1.使用Callable+Future获取执行结果
代码示例:
public class CallableAndFuture { public static void main(String[] args) {
/** Executors提供了一系列工厂方法用于创先线程池,返回的线程池都实现了ExecutorService接口。 */
ExecutorService executor = Executors.newCachedThreadPool();
Task task = new Task();
Future<Integer> result = executor.submit(task); executor.shutdown(); try {
Thread.sleep(1000);
} catch (InterruptedException e1) {
e1.printStackTrace();
} System.out.println("主线程在执行任务"); try {
System.out.println("task运行结果"+result.get());
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
} System.out.println("所有任务执行完毕");
} static class Task implements Callable<Integer> {
@Override
public Integer call() throws Exception {
System.out.println("子线程在进行计算");
Thread.sleep(3000);
int sum = 0;
for(int i=0;i<100;i++)
sum += i;
return sum;
}
}
}
3.4.2.使用Callable+FutureTask获取执行结果
public class CallableAndFuture2 {
public static void main(String[] args) {
//第一种方式
ExecutorService executor = Executors.newCachedThreadPool();
Task task = new Task();
FutureTask<Integer> futureTask = new FutureTask<Integer>(task);
executor.submit(futureTask);
executor.shutdown(); //第二种方式,注意这种方式和第一种方式效果是类似的,只不过一个使用的是ExecutorService,一个使用的是Thread
/*Task task = new Task();
FutureTask<Integer> futureTask = new FutureTask<Integer>(task);
Thread thread = new Thread(futureTask);
thread.start();*/ try {
Thread.sleep(1000);
} catch (InterruptedException e1) {
e1.printStackTrace();
} System.out.println("主线程在执行任务"); try {
System.out.println("task运行结果"+futureTask.get());
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
} System.out.println("所有任务执行完毕");
} static class Task implements Callable<Integer> {
@Override
public Integer call() throws Exception {
System.out.println("子线程在进行计算");
Thread.sleep(3000);
int sum = 0;
for(int i=0;i<100;i++)
sum += i;
return sum;
}
}
}
4.使用线程池Executor创建线程
4.1 Executor执行Runnable
public class Executor执行Runnable { /**
* 从结果中可以看出,pool-1-thread-1和pool-1-thread-2均被调用了两次,这是随机的,execute会首先在线程池中选择
* 一个已有空闲线程来执行任务,如果线程池中没有空闲线程,它便会创建一个新的线程来执行任务。
*/
public static void main(String[] args){
ExecutorService executorService = Executors.newCachedThreadPool();
// ExecutorService executorService = Executors.newFixedThreadPool(5);
// ExecutorService executorService = Executors.newSingleThreadExecutor();
for (int i = 0; i < 5; i++){
executorService.execute(new TestRunnable());
System.out.println("************* a" + i + " *************");
}
executorService.shutdown();
}
} class TestRunnable implements Runnable {
public void run() {
System.out.println(Thread.currentThread().getName() + "线程被调用了。");
} }
执行结果:
************* a1 *************
************* a2 *************
pool-1-thread-2线程被调用了。
************* a3 *************
pool-1-thread-1线程被调用了。
pool-1-thread-2线程被调用了。
************* a4 *************
pool-1-thread-3线程被调用了。
4.2Executor执行Callable
public class Executor执行Callable {
/**
* 从结果中可以同样可以看出,submit也是首先选择空闲线程来执行任务,如果没有,才会创建新的线程来执行任务。
* 另外,需要注意:如果Future的返回尚未完成,则get()方法会阻塞等待,直到Future完成返回,可以通过
* 调用isDone()方法判断Future是否完成了返回。
*/
public static void main(String[] args){
ExecutorService executorService = Executors.newCachedThreadPool();
List<Future<String>> resultList = new ArrayList<Future<String>>(); //创建10个任务并执行
for (int i = 0; i < 10; i++){
//使用ExecutorService执行Callable类型的任务,并将结果保存在future变量中
Future<String> future = executorService.submit(new TaskWithResult(i));
//将任务执行结果存储到List中
resultList.add(future);
} //遍历任务的结果
for (Future<String> fs : resultList){
try{
while(!fs.isDone());//Future返回如果没有完成,则一直循环等待,直到Future返回完成
System.out.println(fs.get()); //打印各个线程(任务)执行的结果
}catch(InterruptedException e){
e.printStackTrace();
}catch(ExecutionException e){
e.printStackTrace();
}finally{
//启动一次顺序关闭,执行以前提交的任务,但不接受新任务
executorService.shutdown();
}
}
}
} class TaskWithResult implements Callable<String> {
private int id; public TaskWithResult(int id){
this.id = id;
} /**
* 任务的具体过程,一旦任务传给ExecutorService的submit方法,
* 则该方法自动在一个线程上执行
*/
public String call() throws Exception {
System.out.println("call()方法被自动调用!!! " + Thread.currentThread().getName());
//该返回结果将被Future的get方法得到
return "call()方法被自动调用,任务返回的结果是:" + id + " " + Thread.currentThread().getName();
}
}
执行结果:
call()方法被自动调用!!! pool-1-thread-1
call()方法被自动调用,任务返回的结果是:0 pool-1-thread-1
call()方法被自动调用!!! pool-1-thread-2
call()方法被自动调用,任务返回的结果是:1 pool-1-thread-2
call()方法被自动调用!!! pool-1-thread-3
call()方法被自动调用,任务返回的结果是:2 pool-1-thread-3
call()方法被自动调用!!! pool-1-thread-5
call()方法被自动调用!!! pool-1-thread-6
call()方法被自动调用!!! pool-1-thread-7
call()方法被自动调用!!! pool-1-thread-9
call()方法被自动调用!!! pool-1-thread-4
call()方法被自动调用,任务返回的结果是:3 pool-1-thread-4
call()方法被自动调用,任务返回的结果是:4 pool-1-thread-5
call()方法被自动调用,任务返回的结果是:5 pool-1-thread-6
call()方法被自动调用,任务返回的结果是:6 pool-1-thread-7
call()方法被自动调用!!! pool-1-thread-8
call()方法被自动调用,任务返回的结果是:7 pool-1-thread-8
call()方法被自动调用,任务返回的结果是:8 pool-1-thread-9
call()方法被自动调用!!! pool-1-thread-10
call()方法被自动调用,任务返回的结果是:9 pool-1-thread-10
java多线程之创建线程的4种方式及Future的更多相关文章
- Java多线程之创建线程的三种方式比较
转载请注明原文地址:http://www.cnblogs.com/ygj0930/p/6560057.html 一:继承Thread类创建线程 1:继承Thread类定义线程子类: 2:重写run( ...
- JAVA·多线程:创建线程的两种方式
1.–扩展java.lang.Thread类 package multiThread; public class Thread02extThread { public static void main ...
- 1.java多线程_实现线程的两种方式
1.java多线程基本知识 1.1.进程介绍 不管是我们开发的应用程序,还是我们运行的其他的应用程序,都需要先把程序安装在本地的硬盘上.然后找到这个程序的启动文件, 启动程序的时候,其实是电脑把当前的 ...
- Java多线程——之一创建线程的四种方法
1.实现Runnable接口,重载run(),无返回值 package thread; public class ThreadRunnable implements Runnable { public ...
- java的线程、创建线程的 3 种方式、静态代理模式、Lambda表达式简化线程
0.介绍 线程:多个任务同时进行,看似多任务同时进行,但实际上一个时间点上我们大脑还是只在做一件事情.程序也是如此,除非多核cpu,不然一个cpu里,在一个时间点里还是只在做一件事,不过速度很快的切换 ...
- 0036 Java学习笔记-多线程-创建线程的三种方式
创建线程 创建线程的三种方式: 继承java.lang.Thread 实现java.lang.Runnable接口 实现java.util.concurrent.Callable接口 所有的线程对象都 ...
- Java并发编程:Java创建线程的三种方式
目录 引言 创建线程的三种方式 一.继承Thread类 二.实现Runnable接口 三.使用Callable和Future创建线程 三种方式的对比 引言 在日常开发工作中,多线程开发可以说是必备技能 ...
- java创建线程的三种方式及其对比
第一种方法:继承Thread类,重写run()方法,run()方法代表线程要执行的任务.第二种方法:实现Runnable接口,重写run()方法,run()方法代表线程要执行的任务.第三种方法:实现c ...
- AJPFX总结java创建线程的三种方式及其对比
Java中创建线程主要有三种方式: 一.继承Thread类创建线程类 (1)定义Thread类的子类,并重写该类的run方法,该run方法的方法体就代表了线程要完成的任务.因此把run()方法称为执行 ...
随机推荐
- PHP 的一些底层知识
本篇内容比较干涩,请自备矿泉水 文章分6个主题进行讲解 PHP运行机制和原理 PHP底层变量数据结构 PHP传值赋值中的COW特性 PHP垃圾回收机制 PHP中数组底层分析 PHP数组函数分类 PHP ...
- java并发编程(二十一)----(JUC集合)CopyOnWriteArraySet和ConcurrentSkipListSet介绍
这一节我们来接着介绍JUC集合:CopyOnWriteArraySet和ConcurrentSkipListSet.从名字上来看我们知道CopyOnWriteArraySet与上一节讲到的CopyOn ...
- PHP版本的区别与用法详解
在我们安装PHP模块时,有时需要注意PHP编译的版本,下面讲解下PHP中VC6.VC9.TS.NTS版本的区别与用法详解,介绍php的两种执行方式. 1. VC6与VC9的区别:VC6版本是使用Vis ...
- .netcore持续集成测试篇之搭建内存服务器进行集成测试一
系列目录 在web项目里,我们把每一层的代码的单元测试都通过并不代表程序能正常运行,因为这个过程缺失了http管道,很多时候我们还还需要把项目布在iis环境中或者在vs里启动iis express服务 ...
- exe4j打包--exe转安装包
前面一篇已经详细的说明了打包成exe的步骤了,下面谈谈exe如何压缩成安装文件.这里用到之前的另外一个软件,具体软件看这篇文章 exe4j打包成exe 打开inno 编辑器 打开软件后我们选择 用[脚 ...
- 通过Blazor使用C#开发SPA单页面应用程序(1)
2019年9月23——25日 .NET Core 3.0即将在.NET Conf上发布! .NET Core的发布及成熟重燃了.net程序员的热情和希望,一些.net大咖也在积极的为推动.NET Co ...
- Spring入门(七):Spring Profile使用讲解
1. 使用场景 在日常的开发工作中,我们经常需要将程序部署到不同的环境,比如Dev开发环境,QA测试环境,Prod生产环境,这些环境下的一些配置肯定是不一样的,比如数据库配置,Redis配置,Rabb ...
- Prometheus 集成 Node Exporter
文章首发于公众号<程序员果果> 地址:https://mp.weixin.qq.com/s/40ULB9UWbXVA21MxqnjBxw 简介 Prometheus 官方和一些第三方,已经 ...
- NLP系列文章:子词嵌入(fastText)的理解!(附代码)
1. 什么是fastText 英语单词通常有其内部结构和形成⽅式.例如,我们可以从"dog""dogs"和"dogcatcher"的字⾯上推 ...
- Day 05--最终修改(一)
1.今天大家集中交流了自己的的课程设计雏形,我们感到收获颇丰.在感慨别的同学设计的别出心裁的同时,我们也反思了自己的模型.通过与老师的讨论我们决定修改已有的首页格式,以及丰富用户的身份:即小程序不仅面 ...