本文基于java构建Flink1.9版本入门程序,需要Maven 3.0.4 和 Java 8 以上版本。需要安装Netcat进行简单调试。

这里简述安装过程,并使用IDEA进行开发一个简单流处理程序,本地调试或者提交到Flink上运行,Maven与JDK安装这里不做说明。

一、Flink简介

Flink诞生于欧洲的一个大数据研究项目StratoSphere。该项目是柏林工业大学的一个研究性项目。早期,Flink是做Batch计算的,但是在2014年,StratoSphere里面的核心成员孵化出Flink,同年将Flink捐赠Apache,并在后来成为Apache的顶级大数据项目,同时Flink计算的主流方向被定位为Streaming,即用流式计算来做所有大数据的计算,这就是Flink技术诞生的背景。

2015开始阿里开始介入flink 负责对资源调度和流式sql的优化,成立了阿里内部版本blink在最近更新的1.9版本中,blink开始合并入flink,

未来flink也将支持java,scala,python等更多语言,并在机器学习领域施展拳脚。

二、Flink开发环境搭建

首先要想运行Flink,我们需要下载并解压Flink的二进制包,下载地址如下:https://flink.apache.org/downloads.html

我们可以选择Flink与Scala结合版本,这里我们选择最新的1.9版本Apache Flink 1.9.0 for Scala 2.12进行下载。

Flink在Windows和Linux下的安装与部署可以查看 Flink快速入门--安装与示例运行,这里演示windows版。

安装成功后,启动cmd命令行窗口,进入flink文件夹,运行bin目录下的start-cluster.bat

$ cd flink
$ cd bin
$ start-cluster.bat
Starting a local cluster with one JobManager process and one TaskManager process.
You can terminate the processes via CTRL-C in the spawned shell windows.
Web interface by default on http://localhost:8081/.

显示启动成功后,我们在浏览器访问 http://localhost:8081/可以看到flink的管理页面。

三、Flink快速体验

请保证安装好了flink,还需要Maven 3.0.4 和 Java 8 以上版本。这里简述Maven构建过程。

其他详细构建方法欢迎查看:快速构建第一个Flink工程

1、搭建Maven工程

使用Flink Maven Archetype构建一个工程。

 $ mvn archetype:generate                               \
-DarchetypeGroupId=org.apache.flink \
-DarchetypeArtifactId=flink-quickstart-java \
-DarchetypeVersion=1.9.0

你可以编辑自己的artifactId groupId

目录结构如下:

$ tree quickstart/
quickstart/
├── pom.xml
└── src
└── main
├── java
│ └── org
│ └── myorg
│ └── quickstart
│ ├── BatchJob.java
│ └── StreamingJob.java
└── resources
└── log4j.properties

在pom中核心依赖:

<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
</dependencies>

2、编写代码

StreamingJob

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
public class StreamingJob { public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<Tuple2<String, Integer>> dataStreaming = env
.socketTextStream("localhost", 9999)
.flatMap(new Splitter())
.keyBy(0)
.timeWindow(Time.seconds(5))
.sum(1); dataStreaming.print(); // execute program
env.execute("Flink Streaming Java API Skeleton");
}
public static class Splitter implements FlatMapFunction<String, Tuple2<String, Integer>> { @Override
public void flatMap(String sentence, Collector<Tuple2<String, Integer>> out) throws Exception {
for(String word : sentence.split(" ")){
out.collect(new Tuple2<String, Integer>(word, 1));
}
} }
}

3、调试程序

安装netcat工具进行简单调试。

启动netcat 输入:

nc -l 9999

启动程序

在netcat中输入几个单词 逗号分隔

在程序一端查看结果

4、程序提交到Flink

启动flink

windows为 start-cluster.bat    linux为start-cluster.sh

localhost:8081查看管理页面

通过maven对代码打包

将打好的包提交到flink上

查看log

tail -f log/flink-***-jobmanager.out

在netcat中继续输入单词,在Running Jobs中查看作业状态,在log中查看输出。

四、Flink 编程模型

Flink提供不同级别的抽象来开发流/批处理应用程序。

最低级抽象只提供有状态流

在实践中,大多数应用程序不需要上述低级抽象,而是针对Core API编程, 如DataStream API(有界/无界流)和DataSet API(有界数据集)。

Table Api声明了一个表,遵循关系模型。

最高级抽象是SQL

我们这里只用到了DataStream API。

Flink程序的基本构建块是转换

一个程序的基本构成:

l 获取execution environment

l 加载/创建原始数据

l 指定这些数据的转化方法

l 指定计算结果的存放位置

l 触发程序执行

五、DataStreaming API使用

1、获取execution environment

StreamExecutionEnvironment是所有Flink程序的基础,获取方法有:

getExecutionEnvironment()

createLocalEnvironment()

createRemoteEnvironment(String host, int port, String ... jarFiles)

一般情况下使用getExecutionEnvironment。如果你在IDE或者常规java程序中执行可以通过createLocalEnvironment创建基于本地机器的StreamExecutionEnvironment。如果你已经创建jar程序希望通过invoke方式获取里面的getExecutionEnvironment方法可以使用createRemoteEnvironment方式。

2、加载/创建原始数据

StreamExecutionEnvironment提供的一些访问数据源的接口

(1)基于文件的数据源

readTextFile(path)
readFile(fileInputFormat, path)
readFile(fileInputFormat, path, watchType, interval, pathFilter, typeInfo)

(2)基于Socket的数据源(本文使用的)

socketTextStream

(3)基于Collection的数据源

fromCollection(Collection)
fromCollection(Iterator, Class)
fromElements(T ...)
fromParallelCollection(SplittableIterator, Class)
generateSequence(from, to)

3、转化方法

(1)Map方式:DataStream -> DataStream

功能:拿到一个element并输出一个element,类似Hive中的UDF函数

举例:

DataStream<Integer> dataStream = //...
dataStream.map(new MapFunction<Integer, Integer>() {
    @Override
    public Integer map(Integer value) throws Exception {
        return 2 * value;
    }
});

(2)FlatMap方式:DataStream -> DataStream

功能:拿到一个element,输出多个值,类似Hive中的UDTF函数

举例:

dataStream.flatMap(new FlatMapFunction<String, String>() {
    @Override
    public void flatMap(String value, Collector<String> out)
        throws Exception {
        for(String word: value.split(" ")){
            out.collect(word);
        }
    }
});

(3)Filter方式:DataStream -> DataStream

功能:针对每个element判断函数是否返回true,最后只保留返回true的element

举例:

dataStream.filter(new FilterFunction<Integer>() {
    @Override
    public boolean filter(Integer value) throws Exception {
        return value != 0;
    }
});

(4)KeyBy方式:DataStream -> KeyedStream

功能:逻辑上将流分割成不相交的分区,每个分区都是相同key的元素

举例:

dataStream.keyBy("someKey") // Key by field "someKey"
dataStream.keyBy(0) // Key by the first element of a Tuple

(5)Reduce方式:KeyedStream -> DataStream

功能:在keyed data stream中进行轮训reduce。

举例:

keyedStream.reduce(new ReduceFunction<Integer>() {
    @Override
    public Integer reduce(Integer value1, Integer value2)
    throws Exception {
        return value1 + value2;
    }
});

(6)Aggregations方式:KeyedStream -> DataStream

功能:在keyed data stream中进行聚合操作

举例:

keyedStream.sum(0);
keyedStream.sum("key");
keyedStream.min(0);
keyedStream.min("key");
keyedStream.max(0);
keyedStream.max("key");
keyedStream.minBy(0);
keyedStream.minBy("key");
keyedStream.maxBy(0);
keyedStream.maxBy("key");

(7)Window方式:KeyedStream -> WindowedStream

功能:在KeyedStream中进行使用,根据某个特征针对每个key用windows进行分组。

举例:

dataStream.keyBy(0).window(TumblingEventTimeWindows.of(Time.seconds(5))); // Last 5 seconds of data

(8)WindowAll方式:DataStream -> AllWindowedStream

功能:在DataStream中根据某个特征进行分组。

举例:

dataStream.windowAll(TumblingEventTimeWindows.of(Time.seconds(5))); // Last 5 seconds of data

(9)Union方式:DataStream* -> DataStream

功能:合并多个数据流成一个新的数据流

举例:

dataStream.union(otherStream1, otherStream2, ...);

(10)Split方式:DataStream -> SplitStream

功能:将流分割成多个流

举例:

SplitStream<Integer> split = someDataStream.split(new OutputSelector<Integer>() {
    @Override
    public Iterable<String> select(Integer value) {
        List<String> output = new ArrayList<String>();
        if (value % 2 == 0) {
            output.add("even");
        }
        else {
            output.add("odd");
        }
        return output;
    }
});

(11)Select方式:SplitStream -> DataStream

功能:从split stream中选择一个流

举例:

SplitStream<Integer> split;
DataStream<Integer> even = split.select("even");
DataStream<Integer> odd = split.select("odd");
DataStream<Integer> all = split.select("even","odd");

4、输出数据

writeAsText()
writeAsCsv(...)
print() / printToErr()
writeUsingOutputFormat() / FileOutputFormat
writeToSocket
addSink

更多Flink相关原理:

穿梭时空的实时计算框架——Flink对时间的处理

大数据实时处理的王者-Flink

统一批处理流处理——Flink批流一体实现原理

Flink快速入门--安装与示例运行

快速构建第一个Flink工程

更多实时计算,Flink,Kafka等相关技术博文,欢迎关注实时流式计算:

Flink入门宝典(详细截图版)的更多相关文章

  1. mysql 命令行操作入门(详细讲解版)

    之前分享过多次Mysql主题,今天继续分享mysql命令行入门   1. 那么多mysql客户端工具,为何要分享命令行操作? -快捷.简单.方便 -在没有客户端的情况下怎么办 -如果是mysql未开启 ...

  2. Flink入门(二)——Flink架构介绍

    1.基本组件栈 了解Spark的朋友会发现Flink的架构和Spark是非常类似的,在整个软件架构体系中,同样遵循着分层的架构设计理念,在降低系统耦合度的同时,也为上层用户构建Flink应用提供了丰富 ...

  3. 数据治理之元数据管理的利器——Atlas入门宝典

    随着数字化转型的工作推进,数据治理的工作已经被越来越多的公司提上了日程.作为Hadoop生态最紧密的元数据管理与发现工具,Atlas在其中扮演着重要的位置.但是其官方文档不是很丰富,也不够详细.所以整 ...

  4. 《c#入门经典第五版》简介及pdf电子书网盘下载地址(收藏)

    <C#入门经典(第5版)>全面讲解C# 2010和.net架构编程知识,为您编写卓越C# 2010程序奠定坚实基础.C#入门经典系列是屡获殊荣的C#名著和超级畅销书.最新版的<C#入 ...

  5. c语言入门经典(第5版)

    文章转载:http://mrcaoyc.blog.163.com/blog/static/23939201520159135915734 文件大小:126MB 文件格式:PDF    [点击下载] C ...

  6. powershell入门教程-v0.3版

    powershell入门教程-v0.3版 来源 https://www.itsvse.com/thread-3650-1-1.html 参考 http://www.cnblogs.com/piapia ...

  7. C语言学习书籍推荐《C语言入门经典(第5版)》下载

    霍尔顿 (Ivor Horton) (作者), 杨浩 (译者) 下载地址:点我 C语言是每一位程序员都应该掌握的基础语言.C语言是微软.NET编程中使用的C#语言的基础:C语言是iPhone.iPad ...

  8. 【转帖】Flink 核心技术浅析(整理版)

    Flink 核心技术浅析(整理版) https://www.cnblogs.com/swordfall/p/10612404.html 分类: Flink undefined 1. Flink简介 A ...

  9. Flink入门(五)——DataSet Api编程指南

    Apache Flink Apache Flink 是一个兼顾高吞吐.低延迟.高性能的分布式处理框架.在实时计算崛起的今天,Flink正在飞速发展.由于性能的优势和兼顾批处理,流处理的特性,Flink ...

随机推荐

  1. 【Isabella Message】 【SPOJ - ISAB】【模拟】【矩阵的旋转】

    思路 题目链接 题意:题目中先给了一个N阶矩阵样子的字符,后给了一个mask,然后又给出你应该认识的一些单词,最后是让你输出最终字典序最小的一句话. 思路:根据题目要求模拟即可.这里会用到string ...

  2. Go语言-基本的http请求操作

    Go发起GET请求 基本的GET请求 //基本的GET请求 package main import ( "fmt" "io/ioutil" "net/ ...

  3. 如何用Python实现敏感词的过滤

    题目要求如下: 从文件解析敏感词,从终端获取用户输入.根据敏感词对用户输入进行过滤.这里过滤需要考虑不止一个过滤词:即将读取的所有过滤词,放进一个列表,用屏蔽词检索用户输入,如果有屏蔽词,则将其替换为 ...

  4. Scrapy爬虫框架学习

    一.Scrapy框架简介 1. 下载页面 2. 解析 3. 并发 4. 深度 二.安装 linux下安装 pip3 install scrapy windows下安装 a.pip3 install w ...

  5. tomcat9 web manager的配置使用

    本地链接tomcat web manager服务时,只需修改tomcat/conf/tomcat-user.xml文件,如图所示: 远程链接tomcat web manager服务时,需要在tomca ...

  6. Python 字符串的所有方法详解

    name = "my name is {name} and my age is {age}" # 首字母大写 name.capitalize() # 统计某个字符的个数 name. ...

  7. 03 requests模块基础

    1. requests 模块简介 什么是requests 模块 requests模块是python中原生的基于网络请求的模块,功能强大,用法简洁高效.在爬虫领域中占据着半壁江山的地位.requests ...

  8. springboot+mybatis+druid+atomikos框架搭建及测试

    前言 因为最近公司项目升级,需要将外网数据库的信息导入到内网数据库内.于是找了一些springboot多数据源的文章来看,同时也亲自动手实践.可是过程中也踩了不少的坑,主要原因是我看的文章大部分都是s ...

  9. Spring源码剖析9:Spring事务源码剖析

    转自:http://www.linkedkeeper.com/detail/blog.action?bid=1045 声明式事务使用 Spring事务是我们日常工作中经常使用的一项技术,Spring提 ...

  10. Android进阶之绘制-自定义View完全掌握(四)

    前面的案例中我们都是使用系统的一些控件通过组合的方式来生成我们自定义的控件,自定义控件的实现还可以通过自定义类继承View来完成.从该篇博客开始,我们通过自定义类继承View来实现一些我们自定义的控件 ...