cogs 313. [POI2001] 和平委员会(2-SAT
http://cogs.pro:8080/cogs/problem/problem.php?pid=pyzQimjkj
题意:有n个集合,每个集合有俩元素,要从n个中各选一个放一堆,但是有的俩不能同时取,让你找出一种选取方案。
思路:2-SAT板子,主要学一下这个算法。算法流程:
构图:若a,b不能同时选,连a->b'和b->a'
求图的极大强连通子图:直接tarjan。
缩点然后变成个新的DAG:因为一个强连通分量里选一个其他都要选,一个不选其他都不能选,所以直接缩成一个点。
对新图拓排:要存反边,这个一开始不造为啥,后来看解释是因为传递的是不选择标记,这边往前代走,对面那边往后代走(对这个起作用)。。选一个他后代都得选,不选谁谁的前代都不能选,so...
自底向上进行选择,删除。
输出。
#include<bits/stdc++.h>
#define oth(x) x&1?x+1:x-1
using namespace std;
const int N = 20010; struct Edge{
int to,nxt;
}e[50010];
int head[N],dfn[N],low[N],st[N],bel[N];
bool vis[N];
int ru[N],q[N],opp[N],pr[N];
int tot_edge,n,nn,m,tot_node,top,cnt_block,L,R;
vector<int>mp[N]; inline int read() {
int x = 0,f = 1;char ch = getchar();
for (; ch<'0'||ch>'9'; ch=getchar()) if(ch=='-') f=-1;
for (; ch>='0'&&ch<='9'; ch=getchar()) x=x*10+ch-'0';
return x * f;
}
void add_edge(int u,int v){
e[++tot_edge].to = v;
e[tot_edge].nxt = head[u];
head[u] = tot_edge;
}
void tarjan(int u){
dfn[u] = low[u] = ++tot_node;
st[++top] = u;
vis[u] = true;
for(int i=head[u];i;i=e[i].nxt){
int v = e[i].to;
if(!dfn[v]){
tarjan(v);
low[u] = min(low[v],low[u]);
}
else if(vis[v])
low[u] = min(dfn[v],low[u]);
}
if(low[u]==dfn[u]){
++cnt_block;
do{
vis[st[top]] = false;
bel[st[top]] = cnt_block;
top--;
}while(st[top+1]!=u);
}
}
void topsort(){
L=1;R=0;
for(int i=1;i<=cnt_block;i++){
if(ru[i]==0) q[++R] = i;
}
while(L<=R){
int u = q[L++];
if(pr[u]) continue;
pr[u] = 1;pr[opp[u]] = 2;
int sz = mp[u].size();
for(int i=0;i<sz;i++){
int v = mp[u][i];
ru[v]--;
if(ru[v]==0) q[++R] = v;
}
}
}
bool work(){
for(int i=1;i<=nn;i++){
if(!dfn[i]) tarjan(i);
}
for(int i=1;i<=nn;i++){
if(bel[i]==bel[oth(i)]) return false;
opp[bel[i]] = bel[oth(i)];
opp[bel[oth(i)]] = bel[i];
}
for(int u=1;u<=nn;u++){
for(int i=head[u];i;i=e[i].nxt){
int v = e[i].to;
if(bel[u]!=bel[v]){
ru[bel[u]]++;
mp[bel[v]].push_back(bel[u]);
}
}
}
topsort();
return true;
}
int main(){
freopen("spo.in","r",stdin);
freopen("spo.out","w",stdout);
n = read(),m = read(),nn = n<<1;
for(int i=1;i<=m;i++){
int a = read(),b = read();
add_edge(a,oth(b));
add_edge(b,oth(a));
}
if(work()){
for(int i=1;i<=nn;i++){
if(pr[bel[i]]==1) cout<<i<<endl;
}
}
else puts("NIE");
return 0;
}
cogs 313. [POI2001] 和平委员会(2-SAT的更多相关文章
- COGS:313. [POI2001] 和平委员会
313. [POI2001] 和平委员会 ★★☆ 输入文件:spo.in 输出文件:spo.out 评测插件时间限制:1 s 内存限制:128 MB 题目描述 根据宪法,Bytelan ...
- [POI2001]和平委员会
题目描述 根据宪法,Byteland民主共和国的公众和平委员会应该在国会中通过立法程序来创立. 不幸的是,由于某些党派代表之间的不和睦而使得这件事存在障碍. 此委员会必须满足下列条件: 每个党派都在委 ...
- 【POI2001】【HDU1814】和平委员会
题面 Description 根据宪法,Byteland民主共和国的公众和平委员会应该在国会中通过立法程序来创立. 不幸的是,由于某些党派代表之间的不和睦而使得这件事存在障碍. 此委员会必须满足下列条 ...
- [模板]2-SAT 问题&和平委员会
tarjan的运用 this is a problem:link 2-SAT处理的是什么 首先,把「2」和「SAT」拆开.SAT 是 Satisfiability 的缩写,意为可满足性.即一串布尔变量 ...
- HDU1814和平委员会
题目大意: 有n对的人,编号从1-2*n,m对的人之间互相不喜欢,每对人中必徐选1个人加入和平委员会,求字典序最小的解 -------------------------------- 2-SAT问题 ...
- HDU 1814 Peaceful Commission / HIT 1917 Peaceful Commission /CJOJ 1288 和平委员会(2-sat模板题)
HDU 1814 Peaceful Commission / HIT 1917 Peaceful Commission /CJOJ 1288 和平委员会(2-sat模板题) Description T ...
- LOJ10097和平委员会
POI 2001 根据宪法,Byteland民主共和国的公众和平委员会应该在国会中通过立法程序来创立. 不幸的是,由于某些党派代表之间的不和睦而使得这件事存在障碍. 此委员会必须满足下列条件: 每个党 ...
- P5782-[POI2001]和平委员会【2-SAT】
正题 题目链接:https://www.luogu.com.cn/problem/P5782 题目大意 \(n\)对人,每对之间恰好有一个人出席.\(m\)对仇恨关系表示两个人不能同时出席. 求是否有 ...
- 2-sat问题学习记录
如果你不知道什么是sat问题,请看以下问答. Q:sat问题是什麽?A:首先你有n个布尔变量,然后你有一个关于这n个布尔变量的布尔表达式,问你,如果让你随意给这n个布尔变量赋值,这个布尔表达式能否成立 ...
随机推荐
- 阿里技术面全A,终面却被产品经理拉下马。。。
大纲: 一.投递简历 二.准备面试 三.技术一面 四.健身房里的技术二面 五.产品经理的死亡三面 六.总结 一.投递简历 找内推.大公司投简历尽量找内推,无论是校招还是社招.校招可以去牛客网或知乎找, ...
- angularjs通信以及postmessage与iframe通信
这篇文章是用markdown工具写的,有需要的可以使用vscode打开 # angularjs 控制器.组件之间的通信 ## 一.基于事件的方式 此方式下,主要通过 angularjs 内置指令` ...
- 再记一次经典Net程序的逆向过程
1.前言 上次发完,有网友问了一个问题:如果不绕过编译,而是直接编译怎么办? 记一次Net软件逆向的过程:https://www.cnblogs.com/dotnetcrazy/p/10142315. ...
- Spring Boot简单环境搭建
#### 一.创建一个简单的Maven项目 使用`Maven`,通过导入`Spring Boot`的`starter`模块,可以将许多程序依赖的包自动导入到工程中.使用`Maven`的`parent ...
- Docker入门学习笔记
Docker 什么是Docker 虚拟化技术 在计算机中,虚拟化是一种资源管理技术,将计算机中的各种实体资源如:CPU.硬盘.内存等予以抽象.转换后呈现出来打破实体结构间的不可切割的障碍,使用户可以比 ...
- Python 与数据库交互
安装:pip3 install pymysql 引入模块在python3里:from pymysql import * 使用步骤:1.创建Connection对象,用于建立与数据库的连接,创建对象调用 ...
- Java集合系列(四):HashMap、Hashtable、LinkedHashMap、TreeMap的使用方法及区别
本篇博客主要讲解Map接口的4个实现类HashMap.Hashtable.LinkedHashMap.TreeMap的使用方法以及三者之间的区别. 注意:本文中代码使用的JDK版本为1.8.0_191 ...
- table 表格 细边框 最简单样式
table 表格细边框的效果实现方法虽然不难,但网上简单有效的方法却很少,在此记录一下 css 样式 /** table 细边框 **/ table{border-collapse: collapse ...
- 1和new Number(1)有什么区别
1和new Number(1)有什么区别 author: @Tiffanysbear 总结,两者的区别就是原始类型和包装对象的区别. 什么是包装对象 对象Number.String.Boolean分别 ...
- 【算法】【排序】【交换类】快速排序QuickSort
#include<stdio.h> //快速排序 int main(){ ,,,,,,,,}; +; //基准指针 ; //慢指针 int* j=a; //快指针 int QS(int* ...