Description

小A有N个正整数,紧接着,他打算依次在黑板上写下这N个数。对于每一个数,他可以决定将这个数写在当前数列的最左边或最右边。现在他想知道,他写下的数列的可能的最长严格上升子序列(可由不连续的元素组成)的长度是多少,同时他还想知道有多少种不同的最长的严格上升子序列。
两个子序列被认为是不同的当且仅当:两个子序列属于两个不同的写序列方案(两个写序列方案中有至少一步是不一样的)或两个子序列位于同一写序列方案的不同位置。
由于结果可能很大,所以小A只需要知道最长严格上升子序列的方案数对10^9+7取模的结果。

 

Input

第一行一个正整数N(1<=N<=2*10^5)。
第二行包含N个由空格隔开的正整数,表示小A写下的初始序列。序列中的每一个元素小于等于10^9。

Output

输出包含一行,输出最长严格上升子序列的长度以及方案数对10^9+7取模的结果。

 

Sample Input

输入1:
2
1 1
输入2:
4
2 1 3 4

Sample Output

输出1:
1 4
输出2:
4 1
 

Data Constraint

30%的数据满足:N<=20
50%的数据满足:N<=1000

Solution

题目有一个隐藏性质是这样的

答案的第一问是对于每个点为结束点或开始点求出的最长上升序列长度和最长下降序列长度之和

在dp以上两个值的过程中同时统计方案数,用树状数组可以n log n时间复杂度做到

#include <vector>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#define set_file(File) freopen(#File".in", "r", stdin), freopen(#File".out", "w", stdout)
#define close_file() fclose(stdin), fclose(stdout)
#define ll long long
#define mo 1000000007
#define maxn 200010 template<class T> inline void Rin(T &x)
{
int c = getchar();
for(x = 0; c < 48 || c > 57; c = getchar());
for(; c > 47 && c < 58; c = getchar()) x = (x << 1) + (x << 3) + c - 48;
} std::vector<int> VeH; int n, seq[maxn], mx[maxn], c[maxn], f[maxn], fs[maxn], g[maxn], gs[maxn]; void get_ans_lef(int i)
{
int x = seq[i] - 1, tot = 1, ans = 0;
for(; x; x -= x & -x)
{
if(mx[x] > ans) ans = mx[x], tot = c[x];
else if(mx[x] == ans) tot = (tot + c[x]) % mo;
}
f[i] = ans + 1, fs[i] = tot;
x = seq[i];
for(; x <= n; x += x & -x)
{
if(mx[x] < f[i]) mx[x] = f[i], c[x] = fs[i];
else if(mx[x] == f[i]) c[x] = (c[x] + fs[i]) % mo;
}
} void get_ans_rig(int i)
{
int x = seq[i] - 1, tot = 1, ans = 0;
for(; x; x -= x & -x)
{
if(mx[x] > ans) ans = mx[x], tot = c[x];
else if(mx[x] == ans) tot = (tot + c[x]) % mo;
}
g[i] = ans + 1, gs[i] = tot;
x = seq[i];
for(; x <= n; x += x & -x)
{
if(mx[x] < g[i]) mx[x] = g[i], c[x] = gs[i];
else if(mx[x] == g[i]) c[x] = (c[x] + gs[i]) % mo;
}
} int main()
{
set_file(sequence);
Rin(n);
for(int i = n; i; i--)
{
Rin(seq[i]);
VeH.push_back(seq[i]);
}
std::sort(VeH.begin(), VeH.end());
VeH.erase(unique(VeH.begin(), VeH.end()), VeH.end());
for(int i = 1; i <= n; i++) seq[i] = std::lower_bound(VeH.begin(), VeH.end(), seq[i]) - VeH.begin() + 1;
for(int i = 1; i <= n; i++) get_ans_lef(i);
memset(mx, 0, sizeof mx);
memset(c, 0, sizeof c);
for(int i = 1; i <= n; i++) seq[i] = n - seq[i] + 1;
for(int i = 1; i <= n; i++) get_ans_rig(i);
int tot = 0, ans = 0;
for(int i = 1; i <= n; i++)
if(f[i] + g[i] - 1 > ans) ans = f[i] + g[i] - 1, tot = (ll)fs[i] * gs[i] % mo;
else if(f[i] + g[i] - 1 == ans) tot = (tot + (ll)fs[i] * gs[i] % mo) % mo;
for(int i = 1; i <= n - ans; i++) tot = (ll)tot * 2 % mo;
printf("%d %d\n", ans, tot);
close_file();
return 0;
}

  

NOI模拟赛(3.15) sequence(序列)的更多相关文章

  1. Java 第十一届 蓝桥杯 省模拟赛 正整数的摆动序列

    正整数的摆动序列 问题描述 如果一个序列的奇数项都比前一项大,偶数项都比前一项小,则称为一个摆动序列.即 a[2i]<a[2i-1], a[2i+1]>a[2i]. 小明想知道,长度为 m ...

  2. 6.28 NOI模拟赛 好题 状压dp 随机化

    算是一道比较新颖的题目 尽管好像是两年前的省选模拟赛题目.. 对于20%的分数 可以进行爆搜,对于另外20%的数据 因为k很小所以考虑上状压dp. 观察最后答案是一个连通块 从而可以发现这个连通块必然 ...

  3. NOI模拟赛 Day1

    [考完试不想说话系列] 他们都会做呢QAQ 我毛线也不会呢QAQ 悲伤ING 考试问题: 1.感觉不是很清醒,有点困╯﹏╰ 2.为啥总不按照计划来!!! 3.脑洞在哪里 4.把模拟赛当作真正的比赛,紧 ...

  4. NOI.ac模拟赛20181021 ball sequence color

    T1 ball 可以发现每次推动球时,是将每个球的位置 −1-1−1 ,然后把最左边的球放到 P−1P-1P−1 处. 记个 −1-1−1 次数,再用set维护就好了. #include <bi ...

  5. NOI 模拟赛 #2

    得分非常惨惨,半个小时写的纯暴力 70 分竟然拿了 rank 1... 如果 OYJason 和 wxjor 在可能会被爆踩吧 嘤 T1 欧拉子图 给一个无向图,如果一个边集的导出子图是一个欧拉回路, ...

  6. 【NOI模拟赛(湖南)】DeepDarkFantasy

    DeepDarkFantasy 从东京出发,不久便到一处驿站,写道:日暮里.  ——鲁迅<藤野先生> 定义一个置换的平方为对1~n的序列做两次该置换得到的序列.已知一个置换的平方,并且这个 ...

  7. [模拟赛] T3 最优序列

    Description 给出一个长度为n(n<=1000)的正整数序列,求一个子序列,使得原序列中任意长度为m的子串中被选出的元素不超过k(k<=m<=10)个,并且选出的元素之和最 ...

  8. NOI模拟赛 #4

    好像只有一个串串题可以做... 不会 dp 和数据结构啊 QAQ 10 + 20 + 100 = 130 T1 一棵树,每个点有一个能量的最大容量 $l_i$ 和一个增长速度 $v_i$,每次可以选一 ...

  9. NOI 模拟赛 #3

    打开题一看,咦,两道数数,一道猫式树题 感觉树题不可做呀,暴力走人 数数题数哪个呢?感觉置换比矩阵好一些 于是数了数第一题 100 + 0 + 15 = 115 T1 bishop 给若干个环,这些环 ...

随机推荐

  1. docker监控之cadvisor

    docker run -d \ --volume=/:/rootfs:ro \ --volume=/var/run:/var/run:rw \ --volume=/sys:/sys:ro \ --vo ...

  2. 喵哈哈村的魔法考试 Round #5 (Div.2) ABCC2

    官方题解:http://www.cnblogs.com/qscqesze/p/6516139.html 喵哈哈村的狼人杀大战(1) 描述 喵哈哈村最近热衷于玩一个叫做狼人杀的游戏! 张小田今天她抽到的 ...

  3. linux系统文件目录解析

    /bin 二进制可执行命令  /dev 设备文件(硬盘/光驱等)  /etc 系统管理和配置文件  /etc/rc.d 启动的配置文件和脚本  /home 用户主目录,下面会有以登录用户名作为文件夹名 ...

  4. 18.3.2从Class上获取信息(方法)

    package d18_3_1; import java.lang.reflect.Method; import java.util.Arrays; /** * 获取Class对应类所包含的方法的四个 ...

  5. 直接修改HEX修改液晶显示内容的方法

    一先通过HEX2bin工具转成bin文件,可粗略看到字节流对应的内容. 二确定原汉字的扫描方式(美术字是图形方式,不确定扫描方式的穷举各种扫描方式),然后根据字体大小.MSB的位置,利用液晶工具生成汉 ...

  6. Suricata产生的数据存储目录

    不多说,直接上干货! 我这里呢,分两种常用的Suricata. 一.源码编译安装的Suricata 这里不多说,大家可以去看我下面写的博客 使用 Suricata 进行入侵监控(一个简单小例子访问百度 ...

  7. ML——决策树模型

    决策树模型 优点:高效简单.易于理解,可以处理不相关特征. 缺点:容易过拟合,训练集在特征上是完备的 决策树过程:特征选择.划分数据集.构建决策树.决策树剪枝 决策树选择最优的划分特征,将数据集按照最 ...

  8. 动手实现 Redux(五):不要问为什么的 reducer

    经过了这么多节的优化,我们有了一个很通用的 createStore: function createStore (state, stateChanger) { const listeners = [] ...

  9. 外文翻译 《How we decide》被情感愚弄 第二节

    本节阅读感言:我们在遭受损失后,很容易破罐子破摔,做出更糟糕的决定. 书的导言 本章第一节 情感系统的缺陷会产生很重要的影响.想一想股票市场,一个典型的随机系统的例子.短期的波动无法给未来长期的股市情 ...

  10. Activity的创建、生命周期

    Activity是Android四大组件之一.一个Activity负责管理一个界面. 创建一个Activity: New -> Activity -> 选择要创建的Activity类型(一 ...