牛客网NOIP赛前集训营 提高组 第5场 T2 旅游

【题解】
我们可以发现不在最小生成树上的边一定不能多次经过,因为一条不在最小生成树上的边(u,v)的边权比最小生成树上(u,v)之间的路径更长,选择不在最小生成树上的边一定不划算。
我们还需要确定最小生成树上哪些边需要经过两次。我们发现如果某个点当前的度为奇数,这个点到它的父亲的边要经过两次,所以我们在它和它父亲之间多连上一条边(即把他们的度都加1).
这样一次dfs我们就可以从下往上确定出需要经过两次的边。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
#define N 500010
#define rg register
using namespace std;
const int Mod=;
int n,m,tot,cnt,last[N],in[N],fa[N];
LL ans,Pow[N];
struct edge{int to,pre,dis;}e[N<<];
struct rec{int u,v;}r[N];
inline int read(){
int k=,f=; char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(''<=c&&c<='')k=k*+c-'',c=getchar();
return k*f;
}
void dfs(int x,int f,int eg){
for(rg int i=last[x],to;i;i=e[i].pre)if((to=e[i].to)!=f) dfs(to,x,i);
if((in[x]&)&&x!=) ans=(ans+Pow[e[eg].dis])%Mod,in[f]++;
}
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int main(){
n=read(); m=read(); Pow[]=;
for(rg int i=;i<=m;i++){
Pow[i]=(Pow[i-]<<)%Mod; ans=(ans+Pow[i])%Mod;
in[r[i].u=read()]++; in[r[i].v=read()]++;
}
for(rg int i=;i<=n;i++) fa[i]=i;
for(rg int i=;i<=m;i++){
int u=r[i].u,v=r[i].v;
if(find(u)!=find(v)){
e[++tot]=(edge){u,last[v],i}; last[v]=tot;
e[++tot]=(edge){v,last[u],i}; last[u]=tot;
fa[find(u)]=find(v);
cnt++; if(cnt==n-) break;
}
}
dfs(,,);
printf("%lld\n",ans);
return ;
}
牛客网NOIP赛前集训营 提高组 第5场 T2 旅游的更多相关文章
- 牛客网NOIP赛前集训营-普及组(第二场)和 牛客网NOIP赛前集训营-提高组(第二场)解题报告
目录 牛客网NOIP赛前集训营-普及组(第二场) A 你好诶加币 B 最后一次 C 选择颜色 D 合法括号序列 牛客网NOIP赛前集训营-提高组(第二场) A 方差 B 分糖果 C 集合划分 牛客网N ...
- 牛客网NOIP赛前集训营-提高组(第二场)A 方差
链接:https://www.nowcoder.com/acm/contest/173/A来源:牛客网 题目描述 一个长度为 m 的序列 b[1...m] ,我们定义它的方差为 ,其中 表示序列的平 ...
- [牛客网NOIP赛前集训营-提高组(第一场)]C.保护
链接:https://www.nowcoder.com/acm/contest/172/C来源:牛客网 题目描述 C国有n个城市,城市间通过一个树形结构形成一个连通图.城市编号为1到n,其中1号城市为 ...
- 牛客网NOIP赛前集训营-提高组(第一场)
牛客的这场比赛感觉真心不错!! 打得还是很过瘾的.水平也比较适合. T1:中位数: 题目描述 小N得到了一个非常神奇的序列A.这个序列长度为N,下标从1开始.A的一个子区间对应一个序列,可以由数对[l ...
- 比赛总结——牛客网 NOIP赛前集训营提高组模拟第一场
第一场打的很惨淡啊 t1二分+前缀最小值没想出来,20分的暴力也挂了,只有10分 t2数位dp,调了半天,结果因为忘了判0的特殊情况WA了一个点,亏死 t3emmmm.. 不会 imone说是DSU ...
- 牛客网NOIP赛前集训营-提高组(第一场)B 数数字
数数字 思路: 数位dp 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC optimize(4) #include< ...
- 牛客网NOIP赛前集训营-提高组(第一场)A 中位数
中位数 思路: 二分答案 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC optimize(4) #include< ...
- 牛客网NOIP赛前集训营-提高组(第四场)游记
牛客网NOIP赛前集训营-提高组(第四场)游记 动态点分治 题目大意: \(T(t\le10000)\)组询问,求\([l,r]\)中\(k(l,r,k<2^{63})\)的非负整数次幂的数的个 ...
- 牛客网NOIP赛前集训营-提高组(第四场)B区间
牛客网NOIP赛前集训营-提高组(第四场)B区间 题目描述 给出一个序列$ a_1 \dots a_n$. 定义一个区间 \([l,r]\) 是好的,当且仅当这个区间中存在一个 \(i\),使得 ...
随机推荐
- 洛谷P1719 最大加权矩形
题目描述 为了更好的备战NOIP2013,电脑组的几个女孩子LYQ,ZSC,ZHQ认为,我们不光需要机房,我们还需要运动,于是就决定找校长申请一块电脑组的课余运动场地,听说她们都是电脑组的高手,校长没 ...
- Ural 1517. Freedom of Choice 后缀数组
Ural1517 所谓后缀数组, 实际上准确的说,应该是排序后缀数组. 一个长度为N的字符串,显然有N个后缀,将他们放入一个数组中并按字典序排序就是后缀数组的任务. 这个数组有很好的性质,使得我们运行 ...
- Java 泛型 三
一.泛型初衷 Java集合不会知道我们需要用它来保存什么类型的对象,所以他们把集合设计成能保存任何类型的对象,只要就具有很好的通用性.但这样做也带来两个问题: –集合对元素类型没有任何限制,这样可能引 ...
- UVaLive 6680 Join the Conversation (DP)
题意:给出n条发言,让你求最大的交流长度并输出标记顺序. 析:这个题要知道的是,前面的人是不能at后面的人,只能由后面的人at前面的,那就简单了,我们只要更新每一层的最大值就好,并不会影响到其他层. ...
- bzoj 1603: [Usaco2008 Oct]打谷机【瞎搞】
一棵树,碰到改变转向的边就异或一下,从1dfs一遍 #include<iostream> #include<cstdio> using namespace std; const ...
- 10.11NOIP模拟题(3)
/* 可以看出,对于一段区间[L,R]如果统计了答案 若a[L]<a[R],那么当右端点往左移时答案不会更优,a[R]>a[L]同理 所以两个指针分别从头尾往中间扫那边小移哪边即可. */ ...
- 13、git
安装Git 网上有很多Git安装教程,如果需要图形界面,windows下建议使用TortoiseGit,linux建议使用Git GUI或者GITK.(windows下载exe安装包,linux可以使 ...
- Android 性能优化(23)*性能工具之「Heap Viewer, Memory Monitor, Allocation Tracker」Memory Profilers
Memory Profilers In this document Memory Monitor Heap Viewer Allocation Tracker You should also read ...
- selenium + python实现截图并且保存图片
webdriver的截图功能十分强悍,无论页面多长,webdriver都能比较完美的截到完整的页面. python代码: # -*- coding: utf-8 -*-from selenium im ...
- idea工程jdk设置问题
经常用idea的朋友,会遇到一个问题,那就是你在单测的时候,会报一个jdk的错,截图如下: 我的解决方案是在pom.xml里配置一个节点: <properties> <maven.c ...