【题解】

  我们可以发现不在最小生成树上的边一定不能多次经过,因为一条不在最小生成树上的边(u,v)的边权比最小生成树上(u,v)之间的路径更长,选择不在最小生成树上的边一定不划算。

  我们还需要确定最小生成树上哪些边需要经过两次。我们发现如果某个点当前的度为奇数,这个点到它的父亲的边要经过两次,所以我们在它和它父亲之间多连上一条边(即把他们的度都加1).

  这样一次dfs我们就可以从下往上确定出需要经过两次的边。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
#define N 500010
#define rg register
using namespace std;
const int Mod=;
int n,m,tot,cnt,last[N],in[N],fa[N];
LL ans,Pow[N];
struct edge{int to,pre,dis;}e[N<<];
struct rec{int u,v;}r[N];
inline int read(){
int k=,f=; char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(''<=c&&c<='')k=k*+c-'',c=getchar();
return k*f;
}
void dfs(int x,int f,int eg){
for(rg int i=last[x],to;i;i=e[i].pre)if((to=e[i].to)!=f) dfs(to,x,i);
if((in[x]&)&&x!=) ans=(ans+Pow[e[eg].dis])%Mod,in[f]++;
}
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int main(){
n=read(); m=read(); Pow[]=;
for(rg int i=;i<=m;i++){
Pow[i]=(Pow[i-]<<)%Mod; ans=(ans+Pow[i])%Mod;
in[r[i].u=read()]++; in[r[i].v=read()]++;
}
for(rg int i=;i<=n;i++) fa[i]=i;
for(rg int i=;i<=m;i++){
int u=r[i].u,v=r[i].v;
if(find(u)!=find(v)){
e[++tot]=(edge){u,last[v],i}; last[v]=tot;
e[++tot]=(edge){v,last[u],i}; last[u]=tot;
fa[find(u)]=find(v);
cnt++; if(cnt==n-) break;
}
}
dfs(,,);
printf("%lld\n",ans);
return ;
}

牛客网NOIP赛前集训营 提高组 第5场 T2 旅游的更多相关文章

  1. 牛客网NOIP赛前集训营-普及组(第二场)和 牛客网NOIP赛前集训营-提高组(第二场)解题报告

    目录 牛客网NOIP赛前集训营-普及组(第二场) A 你好诶加币 B 最后一次 C 选择颜色 D 合法括号序列 牛客网NOIP赛前集训营-提高组(第二场) A 方差 B 分糖果 C 集合划分 牛客网N ...

  2. 牛客网NOIP赛前集训营-提高组(第二场)A 方差

    链接:https://www.nowcoder.com/acm/contest/173/A来源:牛客网 题目描述 一个长度为 m 的序列 b[1...m] ,我们定义它的方差为 ,其中  表示序列的平 ...

  3. [牛客网NOIP赛前集训营-提高组(第一场)]C.保护

    链接:https://www.nowcoder.com/acm/contest/172/C来源:牛客网 题目描述 C国有n个城市,城市间通过一个树形结构形成一个连通图.城市编号为1到n,其中1号城市为 ...

  4. 牛客网NOIP赛前集训营-提高组(第一场)

    牛客的这场比赛感觉真心不错!! 打得还是很过瘾的.水平也比较适合. T1:中位数: 题目描述 小N得到了一个非常神奇的序列A.这个序列长度为N,下标从1开始.A的一个子区间对应一个序列,可以由数对[l ...

  5. 比赛总结——牛客网 NOIP赛前集训营提高组模拟第一场

    第一场打的很惨淡啊 t1二分+前缀最小值没想出来,20分的暴力也挂了,只有10分 t2数位dp,调了半天,结果因为忘了判0的特殊情况WA了一个点,亏死 t3emmmm.. 不会 imone说是DSU ...

  6. 牛客网NOIP赛前集训营-提高组(第一场)B 数数字

    数数字 思路: 数位dp 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC optimize(4) #include< ...

  7. 牛客网NOIP赛前集训营-提高组(第一场)A 中位数

    中位数 思路: 二分答案 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC optimize(4) #include< ...

  8. 牛客网NOIP赛前集训营-提高组(第四场)游记

    牛客网NOIP赛前集训营-提高组(第四场)游记 动态点分治 题目大意: \(T(t\le10000)\)组询问,求\([l,r]\)中\(k(l,r,k<2^{63})\)的非负整数次幂的数的个 ...

  9. 牛客网NOIP赛前集训营-提高组(第四场)B区间

    牛客网NOIP赛前集训营-提高组(第四场)B区间 题目描述 给出一个序列$ a_1  \dots   a_n$. 定义一个区间 \([l,r]\) 是好的,当且仅当这个区间中存在一个 \(i\),使得 ...

随机推荐

  1. softmax function in c++

    #include <iostream> #include <vector> #include <cmath> #include <algorithm> ...

  2. Java应用程序中的声音播放

    声音可以创造意境,触发遐想,当与虚拟图像相结合时,更加可以让整个世界充满幻觉,声音是多媒体技术的基础. 播放声音是Java对多媒体的支持一个重要部分,它支持的声音文件类型主要有: AU - (扩展名为 ...

  3. sql注入方法以及防范

    sql注入方法: 1.数字注入 ; get请求 www.bobo.com?id=1 可以查出 ID等于1的一条数据. 如果有人在链接后面增加  www.bobo.com?id=1 or 1=1 / w ...

  4. Java多线程(九) synchronized 锁对象的改变

    public class MyService { private String lock = "123"; public void testMethod() { synchroni ...

  5. 洛谷 P2881 [USACO07MAR]排名的牛Ranking the Cows

    题应该是假的...先不做了 https://www.cnblogs.com/Blue233333/p/7249057.html 比如输入5 0,答案是10,但可以比较8次就出来.就是在一个已知有序数列 ...

  6. Manacher HDOJ 5371 Hotaru's problem

    题目传送门 /* 题意:求形如(2 3 4) (4 3 2) (2 3 4)的最长长度,即两个重叠一半的回文串 Manacher:比赛看到这题还以为套个模板就行了,因为BC上有道类似的题,自己又学过M ...

  7. magento 翻译使用实例

    在自定义的模块中若想要使用翻译,需在config.xml中加入如下配置 <config> <adminhtml> //后台 <translate> <modu ...

  8. Android 性能优化(15)网络优化( 11)Manipulating Broadcast Receivers On Demand

    Manipulating Broadcast Receivers On Demand This lesson teaches you to Toggle and Cascade State Chang ...

  9. 393 UTF-8 Validation UTF-8 编码验证

    详见:https://leetcode.com/problems/utf-8-validation/description/ C++: class Solution { public: bool va ...

  10. Storm概念学习系列之核心概念(Tuple、Spout、Blot、Stream、Stream Grouping、Worker、Task、Executor、Topology)(博主推荐)

    不多说,直接上干货! 以下都是非常重要的storm概念知识. (Tuple元组数据载体 .Spout数据源.Blot消息处理者.Stream消息流 和 Stream Grouping 消息流组.Wor ...