题目:

最短路径问题

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 19767    Accepted Submission(s): 5880

Problem Description
给你n个点。m条无向边,每条边都有长度d和花费p。给你起点s终点t,要求输出起点到终点的最短距离及其花费,假设最短距离有多条路线,则输出花费最少的。
 

Input
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d。花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。

(1<n<=1000, 0<m<100000, s != t)

 

Output
输出 一行有两个数, 最短距离及其花费。
 

Sample Input

3 2
1 2 5 6
2 3 4 5
1 3
0 0
 

Sample Output

9 11
 

Source


题目简单;

标准Dijkstra,注意在更新距离值时同一时候更新价格。最后一并输出。

数据没有坑点。

#include<iostream>
#include<algorithm>
#include<queue>
#include<string.h>
#include<math.h>
#include<vector> using namespace std; struct node{
int ans = 0;
int vis = 0;
int minr = 1e9;
vector<int>con;
vector<int>len;
vector<int>exp;
}data[2005]; int main()
{
int n, m, begi, endi;
while (cin >> n >> m)
{
if (n == 0 && m == 0)
{
return 0;
}
for (size_t i = 0; i <= n; i++)
{
data[i].ans = 0;
data[i].vis = 0;
data[i].minr = 1e9;
data[i].con.clear();
data[i].len.clear();
data[i].exp.clear();
}
for (size_t i = 0; i < m; i++)
{
int be, ed, len, tar;
scanf("%d%d%d%d", &be, &ed, &len, &tar);
data[be].con.push_back(ed);
data[be].len.push_back(len);
data[ed].con.push_back(be);
data[ed].len.push_back(len);
data[be].exp.push_back(tar);
data[ed].exp.push_back(tar);
}
cin >> begi >> endi;
data[begi].ans = 0;
data[begi].minr = 0;
while (1)
{
if (begi == endi)
{
break;
}
int size = data[begi].con.size();
for (size_t i = 0; i < size; i++)
{
if (data[data[begi].con[i]].minr > data[begi].minr + data[begi].len[i])
{
data[data[begi].con[i]].ans = data[begi].ans + data[begi].exp[i];
data[data[begi].con[i]].minr = data[begi].minr + data[begi].len[i];
}
else if (data[data[begi].con[i]].minr == data[begi].minr + data[begi].len[i])
{
data[data[begi].con[i]].ans = min(data[begi].ans + data[begi].exp[i], data[data[begi].con[i]].ans);
}
}
data[begi].vis = 1;
int temp = 1e9;
begi = -1;
for (size_t i = 1; i <= n; i++)
{
if (temp>data[i].minr&&data[i].vis == 0)
{
temp = data[i].minr;
begi = i;
}
}
if (begi == -1)
{
break;
}
}
cout << data[endi].minr << " " << data[endi].ans << "\n";
} }

#HDU 3790 最短路径问题 【Dijkstra入门题】的更多相关文章

  1. ACM: HDU 3790 最短路径问题-Dijkstra算法

    HDU 3790 最短路径问题 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Des ...

  2. HDU - 3790 最短路径问题 (dijkstra算法)

    HDU - 3790 最短路径问题 Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费 ...

  3. POJ 3790 最短路径问题(Dijkstra变形——最短路径双重最小权值)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3790 Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你 ...

  4. hdu 3790 最短路径问题(双重权值,dijkstra算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3790 题目大意:题意明了,输出最短路径及其花费. 需要注意的几点:(1)当最短路径相同时,输出最小花费 ...

  5. hdu 2680 最短路径(dijkstra算法+多源最短路径单源化求最小值)这题有点意思

    Choose the best route Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  6. HDU 3790 最短路径问题(SPFA || Dijkstra )

    题目链接 题意 : 中文题不详述. 思路 :无论是SPFA还是Dijkstra都在更新最短路的那个地方直接将花费更新了就行,还有别忘了判重边,话说因为忘了判重边WA了一次. #include < ...

  7. hdu 3790 最短路径dijkstra(多重权值)

    最短路径问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  8. HDU 3790 最短路径问题【Dijkstra】

    题意:给出n个点,m条边,每条边的长度d和花费p,给出起点和终点的最短距离和花费,求最短距离,如果有多个最短距离,输出花费最少的 在用dijkstra求最短距离的时候,再用一个f[]数组保存下最少花费 ...

  9. HDU 3790 最短路径问题 (最短路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3790 简单的最短路问题,这题听说有重边.我用spfa和dijkstra写了一遍,没判重边,速度都差不多 ...

随机推荐

  1. DatePickerDialog和TimePickerDialog(基于对话框显示时间和日期)

    public class MainActivity extends Activity implements android.view.View.OnClickListener{ private But ...

  2. Python操作远程数据库

    我的项目要往数据库中插入create_time和update_time,那就势必要引用现在的系统时间,经过大量的查找,终于发现往python是没有对应时间datetime的相关通配符的,那么我们要怎么 ...

  3. js文件中引用其他js文件

    这一个功能的作用是做自己的js包时,可以通过引入一个整体的js文件而引入其他js. 只需要在总体的js加上这一句话 document.write("<script type='text ...

  4. STA之Concepts (1)

    Static Timing Analysis is one of the many techniques available to verify the timing of a digital des ...

  5. HDU_1114_piggy-bank

    Piggy-Bank Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit S ...

  6. 前端请求操作类型(get post put delete)

    get:获取数据 post:增加 put:修改 delete:删除

  7. 网站卡测试用 PageSpeed Insights

    这个是google测试网页的;https://developers.google.com/speed/pagespeed/insights/ PageSpeed Insights 简介 PageSpe ...

  8. vue之基础---组件基础

    (1)基本示例 Vue组件示例 /* 先注册组件,定义一个名为button-component的新组件 */ Vue.component('button-component',{ data:funct ...

  9. 更改Visual Studio Code为中文字体最有效的方法

    更改Visual Studio Code为中文字体最有效的方法. 网址:  https://marketplace.visualstudio.com/search?target=VSCode& ...

  10. JS中遍历EL表达式中后台传过来的Java集合

    前言:在我的项目里有这么一个情况,后台直接model.addAttribute()存储了一个对象,此对象内部有一个集合,前端JSP处理的方法正常情况下就是直接使用EL表达式即可.但是如果在JS中需要使 ...