http://poj.org/problem?id=2478

此题只是用简单的欧拉函数求每一个数的互质数的值会超时,因为要求很多数据的欧拉函数值,所以选用欧拉函数打表法。

PS:因为最后得到的结果会很大,所以结果数据类型不要用int,改为long long就没问题了

#include <iostream>
#include <stdio.h>
using namespace std;
#define LL long long
LL F[];
int phi[]; void phi_table(int n)
{
for(int i=;i<=n;i++)phi[i]=;
phi[]=;
for(int i=;i<=n;i++)
if(!phi[i])
for(int j=i;j<=n;j+=i)
{
if(!phi[j])phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
} int main()
{
int n;
F[]=;
phi_table();
for(int i=;i<=;i++) F[i] = F[i-]+phi[i];
while(scanf("%d",&n)&&n!=){
cout<<F[n]<<endl;
}
return ;
}

POJ 2478 欧拉函数打表的运用的更多相关文章

  1. A - Bi-shoe and Phi-shoe (欧拉函数打表)

    Description Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a ver ...

  2. hdu 2824 The Euler function 欧拉函数打表

    The Euler function Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. UVA 11426 GCD - Extreme (II)(欧拉函数打表 + 规律)

    Given the value of N, you will have to find the value of G. The definition of G is given below:Here ...

  4. POJ 2407 (欧拉函数)

    题目链接: http://poj.org/problem?id=2407 题目大意:求小于n且与n互质的正整数个数. 解题思路: 欧拉函数=小于n且与n互质的正整数个数. 公式=n*(1-1/P1)* ...

  5. uva 11426 GCD - Extreme (II) (欧拉函数打表)

    题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...

  6. LightOJ - 1370 Bi-shoe and Phi-shoe (欧拉函数打表)

    题意:给N个数,求对每个数ai都满足最小的phi[x]>=ai的x之和. 分析:先预处理出每个数的欧拉函数值phi[x].对于每个数ai对应的最小x值,既可以二分逼近求出,也可以预处理打表求. ...

  7. poj 2407 欧拉函数裸题

    http://poj.org/problem?id=2407 题意:多组数据,每次输入一个数 ,求这个数的欧拉函数 int euler_phi(int n){//单个欧拉函数 int m=(int)s ...

  8. POJ 3090 欧拉函数

    求一个平面内可见的点,其实就是坐标互质即可,很容易看出来或者证明 所以求对应的欧拉函数即可 #include <iostream> #include <cstdio> #inc ...

  9. Relatives POJ - 2407 欧拉函数

    题意: 给你一个正整数n,问你在区间[1,n)中有多少数与n互质 题解: 1既不是合数也不是质数(1不是素数) 互质是公约数只有1的两个整数,叫做互质整数.公约数只有1的两个自然数,叫做互质自然数 所 ...

随机推荐

  1. AJPFX浅谈Java 性能优化之字符串过滤实战

    ★一个简单的需求 首先描述一下需求:给定一个 String 对象,过滤掉除了数字(字符'0'到'9')以外的其它字符.要求时间开销尽可能小.过滤函数的原型如下: String filter(Strin ...

  2. 【学习笔记】OSG 基本几何图元

    例:geom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::QUADS,0,4)); 来指定要利用这些数据生成一个怎么样的形状. ...

  3. mysql5.7.25集群部署和方案设计(附PXC一键部署脚本)

    还记得我们之前部署mysql集群有多麻烦嘛?波哥来救你们啦!~ 我已将项目上传到了我的github仓库中,大家可以点击仓库地址出现的连接登录查看相应的代码!如果觉得不错别忘了转发.点赞哦! 部署步骤: ...

  4. [Windows Server 2012] 安装IIS8.5及FTP

    ★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com ★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频. ★ 本节我们将带领大家:安装IIS ...

  5. Database coalesce

    coalesce 语法 注意:连接操作符“||”是一个值得注意的例外. 例如,空值加任何值都是空值,空值 乘任何值也都是空值,依此类推. 参数 expression 任何类型的表达式. n 表示可以指 ...

  6. 自制Jquery下拉框插件

    (function ($) { $.fn.select3 = function (option) { $(this).each(function () { var _this = $(this); v ...

  7. 云态(YunCloud)的Centos服务器修改dns教程

    DNS(Domain Name System,域名系统),因特网上作为域名和IP地址相互映射的一个分布式数据库,能够使用户更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串.通过主机名,最终 ...

  8. iOS开发内购全套图文教程

    2015年最全的内购图文教程,首先是填各种资料,最后是代码,废话不多说,直接上图 ======================第一部分协议=============== 第一步 第二步 第三步 第四步 ...

  9. Activiti6简明教程

    一.为什么选择Activiti 工作流引擎对比 二.核心7大接口.28张表 7大接口 (一)7大接口 RepositoryService:提供一系列管理流程部署和流程定义的API. RuntimeSe ...

  10. Tomcat启动报错 ERROR org.apache.struts2.dispatcher.Dispatcher - Dispatcher initialization failed

    背景: 在进行Spring Struts2 Hibernate 即SSH整合的过程中遇到了这个错误! 原因分析: Bean已经被加载了,不能重复加载 原来是Jar包重复了!  情形一:  Tomcat ...