HDU 5468 Puzzled Elena
Puzzled Elena
This problem will be judged on HDU. Original ID: 5468
64-bit integer IO format: %I64d Java class name: Main
Since both Stefan and Damon fell in love with Elena, and it was really difficult for her to choose. Bonnie, her best friend, suggested her to throw a question to them, and she would choose the one who can solve it.
Suppose there is a tree with n vertices and n - 1 edges, and there is a value at each vertex. The root is vertex 1. Then for each vertex, could you tell me how many vertices of its subtree can be said to be co-prime with itself?
NOTES: Two vertices are said to be co-prime if their values' GCD (greatest common divisor) equals 1.
Input
There are multiply tests (no more than 8).
For each test, the first line has a number n $(1\leq n\leq 10^5)$, after that has n−1 lines, each line has two numbers a and b$ (1\leq a,b\leq n)$, representing that vertex a is connect with vertex b. Then the next line has n numbers, the ith number indicates the value of the ith vertex. Values of vertices are not less than 1 and not more than $10^5$.
Output
For each test, at first, please output "Case #k: ", k is the number of test. Then, please output one line with n numbers (separated by spaces), representing the answer of each vertex.
Sample Input
5
1 2
1 3
2 4
2 5
6 2 3 4 5
Sample Output
Case #1: 1 1 0 0 0
Source
#include <bits/stdc++.h>
using namespace std;
const int maxn = ;
bool np[maxn] = {true,true};
int mu[maxn],p[maxn],tot;
vector<int>fac[maxn],g[maxn];
void mobius(int n) {
mu[] = ;
for(int i = ; i <= n; ++i) {
if(!np[i]) {
p[tot++] = i;
mu[i] = -;
}
for(int j = ; j < tot && p[j]*i <= n; ++j) {
np[p[j]*i] = true;
if(i%p[j] == ) {
mu[p[j]*i] = ;
break;
}
mu[p[j]*i] = -mu[i];
}
}
for(int i = ; i <= n; ++i) if(mu[i])
for(int j = i; j <= n; j += i)
fac[j].push_back(i);
}
int val[maxn],cnt[maxn],sz[maxn],ans[maxn];
void dfs(int u,int fa) {
sz[u] = ;
vector<int>pre;
for(int &c:fac[val[u]]) {
pre.push_back(cnt[c]);
++cnt[c];
}
for(auto &v:g[u]) {
if(v == fa) continue;
dfs(v,u);
sz[u] += sz[v];
}
ans[u] = sz[u];
for(int i = ; i < fac[val[u]].size(); ++i) {
int x = fac[val[u]][i];
int y = cnt[x] - pre[i];
ans[u] += mu[x]*y;
}
}
int main() {
int n,u,v,cs = ;
mobius();
while(~scanf("%d",&n)) {
for(int i = ; i <= n; ++i) g[i].clear();
for(int i = ; i < n; ++i) {
scanf("%d%d",&u,&v);
g[u].push_back(v);
g[v].push_back(u);
}
for(int i = ; i <= n; ++i)
scanf("%d",val + i);
memset(cnt,,sizeof cnt);
dfs(,);
printf("Case #%d:",cs++);
for(int i = ; i <= n; ++i)
printf(" %d",ans[i]);
putchar('\n');
}
return ;
}
HDU 5468 Puzzled Elena的更多相关文章
- HDU 5468 Puzzled Elena (dfs + 莫比乌斯反演)
题意:给定一棵带权树,求每个点与其子树结点的权值互质的个数. 析:首先先要进行 dfs 遍历,len[i] 表示能够整除 i 的个数,在遍历的前和遍历后的差值就是子树的len值,有了这个值,就可以使用 ...
- HDU 5468 Puzzled Elena 莫比乌斯反演
题意: 给出一棵树,每个点上有权值.然后求每棵子树中与根节点互质( \(gcd(a, b) = 1\) )的节点个数. 分析: 对于一颗子树来说,设根节点的权值为\(u\), \(count_i\)表 ...
- hdu 5468(莫比乌斯+搜索)
hdu 5468 Puzzled Elena /*快速通道*/ Sample Input 5 1 2 1 3 2 4 2 5 6 2 3 4 5 Sample Output Case #1: ...
- hdu5468 Puzzled Elena
hdu5468 Puzzled Elena 题意 求一棵子树内与它互质的点个数 解法 容斥 我们先求出与它不互质的数的个数,再用总数减去就好. #include <cstdio> #inc ...
- hdu 5468(dfs序+容斥原理)
Puzzled Elena Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)T ...
- 2015上海网络赛 A Puzzled Elena
题意:给定一棵树,求这个节点的所有子树中包括他本身与它互质的节点的个数. 解题思路:题利用dfs序+容斥原理+前缀和性质解决.题目中要求每个结点,和多少个它的子结点互素.如果每次为了求一个点去跑一遍d ...
- 2015 ACM/ICPC Asia Regional Shanghai Online
1001 Puzzled Elena 1002 Antonidas 1003 Typewriter 1004 Count the Grid 1005 Code Formatting 1006 Ther ...
- dfs序题目练习
参考博文:http://blog.csdn.net/qwe2434127/article/details/49819975 http://blog.csdn.net/qq_24489717/artic ...
- HDU5468(dfs序+容斥原理)
Puzzled Elena Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)T ...
随机推荐
- 题解报告:hdu 1392 Surround the Trees(凸包入门)
Problem Description There are a lot of trees in an area. A peasant wants to buy a rope to surround a ...
- Aappcloud 调到二级页面黑屏
PartnerHead3.html 后面多了一个点
- [转]深入浅出WPF(7)——数据的绿色通道,Binding
本文转自:http://liutiemeng.blog.51cto.com/120361/95273 小序: 怎么直接从2蹦到7啦?!啊哦,实在是不好意思,最近实在是太忙了,忙的原因也非常简单——自己 ...
- PL/SQL笔记(1)-流程控制,循环,异常,块
流程控制 1.If,then,else,elsif(不是elseif) ' then null; endif; 2.Case 简单case表达式: 搜索型Case表达式: 3.goto语句 begin ...
- AS 开发环境配置
安装时不用设置代理(proxy). 建议选择标准安装,自定义安装容易选掉一些功能.插件. SDK Tools里的(HAXM installer)有时会未安装,安装完需检查(HAXM installer ...
- Android单独继承View类来实现自定义控件
一个单独继承view类来实现自定义控件,在该方法中,需要重写ondraw方法来绘制自己所需要的控件,下面也以一个简单的例子来说明如何实现自定义控件.该方法可以实现所需要的所有的自定义控件. 属性文件中 ...
- SpringMvc之参数绑定注解详解
引言: 前段时间项目中用到了REST风格来开发程序,但是当用POST.PUT模式提交数据时,发现服务器端接受不到提交的数据(服务器端参数绑定没有加任何注解),查看了提交方式为application/j ...
- MATLAB学习总结(1)
MATLAB学习总结(1) path help path cd(current directory) savepath pathtool
- JAVA自带的加密算法-MD5\SHA1\BASE64
需要导入jar包: commons-codec.jar MD5 String str = "abc"; DigestUtils.md5Hex(str); SHA1 String s ...
- [Python學習筆記] 使用xlwings 插入註解 (forked 版本)
到今天為止 xlwings 還沒有插入註解的功能 去原始開發者的 Github Pull Requests 他說之前有人有建議要加入這個功能 但他還沒更新~ 如果需要使用 Python 來插入註解的話 ...