The city planners plan to build N plants in the city which has M shops.

Each shop needs products from some plants to make profit of proiproi units.

Building ith plant needs investment of payipayi units and it takes titi days.

Two or more plants can be built simultaneously, so that the time for building multiple plants is maximum of their periods(titi).

You should make a plan to make profit of at least L units in the shortest period. 

InputFirst line contains T, a number of test cases.

For each test case, there are three integers N, M, L described above.

And there are N lines and each line contains two integers payipayi, titi(1<= i <= N).

Last there are M lines and for each line, first integer is proiproi, and there is an integer k and next k integers are index of plants which can produce material to make profit for the shop.

1 <= T <= 30 
1 <= N, M <= 200 
1≤L,ti≤10000000001≤L,ti≤1000000000 
1≤payi,proi≤300001≤payi,proi≤30000 
OutputFor each test case, first line contains a line “Case #x: t p”, x is the number of the case, t is the shortest period and p is maximum profit in t hours. You should minimize t first and then maximize p.

If this plan is impossible, you should print “Case #x: impossible” 
Sample Input

2

1 1 2
1 5
3 1 1 1 1 3
1 5
3 1 1

Sample Output

Case #1: 5 2
Case #2: impossible
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 405
#define L 31
#define INF 1000000009
#define eps 0.00000001
#define sf(a) scanf("%lld",&a)
struct plant
{
LL pay, time;
LL id;
bool operator<(const plant& rhs) const
{
return time < rhs.time;
}
};
struct shop
{
LL cnt, time, pro;
LL pl[MAXN];
};
shop s[MAXN];
plant p[MAXN];
LL g[MAXN << ][MAXN << ];
LL level[MAXN<<];
LL T, n, m, l, st, ed, ans, tmp;
bool bfs()
{
memset(level, -, sizeof(level));
level[st] = ;
queue<LL> q;
q.push(st);
while (!q.empty())
{
LL f = q.front();
q.pop();
for (LL i = ; i <= ed; i++)
{
if (level[i] == - && g[f][i] > )
{
level[i] = level[f] + ;
q.push(i);
}
}
}
return level[ed] > ;
}
LL dinic(LL k, LL low)
{
if (k == ed)return low;
LL a;
for (LL i = ; i <= ed; i++)
{
if (level[i] == level[k] + && g[k][i] > && (a = dinic(i, min(low, g[k][i]))))
{
g[k][i] -= a;
g[i][k] += a;
return a;
}
}
return ;
}
void solve()
{
ans = ;
while (bfs())
{
while (tmp = dinic(st, INF))
ans += tmp;
}
}
int main()
{
sf(T);
for (LL cas = ; cas <= T; cas++)
{
sf(n), sf(m), sf(l);
for (LL i = ; i <= n; i++)
{
sf(p[i].pay), sf(p[i].time);
p[i].id = i;
}
for (LL i = ; i <= m; i++)
{
sf(s[i].pro);
sf(s[i].cnt);
s[i].time = ;
for (LL j = ; j < s[i].cnt; j++)
{
sf(s[i].pl[j]);
s[i].time = max(s[i].time, p[s[i].pl[j]].time);
}
}
sort(p + , p + + n);
bool f = false;
st = n + m + , ed = st + ;
printf("Case #%lld: ", cas);
for (LL i = ; i <= n; i++)
{
memset(g, , sizeof(g));
for (LL j = ; j <= i; j++)
g[p[j].id][ed] = p[j].pay;
LL tot = ;
for (LL j = ; j <= m; j++)
{
if (s[j].time <= p[i].time)
{
tot += s[j].pro;
g[st][j + n] = s[j].pro;
for (LL k = ; k < s[j].cnt; k++)
g[j + n][s[j].pl[k]] = INF;
}
}
solve();
ans = tot - ans;
if (ans >= l)
{
printf("%lld %lld\n", p[i].time, ans);
f = true;
break;
}
}
if (!f)
printf("impossible\n");
}
}

Less Time, More profit 最大权闭合子图(最大流最小割)的更多相关文章

  1. HDU 5855 Less Time, More profit 最大权闭合子图

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5855 Less Time, More profit Time Limit: 2000/1000 MS ...

  2. 【最大权闭合子图 最小割】bzoj1497: [NOI2006]最大获利

    最大权闭合子图的模型:今天才发现dinic板子是一直挂的…… Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在 ...

  3. 洛谷 P4174 [NOI2006]最大获利 && 洛谷 P2762 太空飞行计划问题 (最大权闭合子图 && 最小割输出任意一组方案)

    https://www.luogu.org/problemnew/show/P4174 最大权闭合子图的模板 每个通讯站建一个点,点权为-Pi:每个用户建一个点,点权为Ci,分别向Ai和Bi对应的点连 ...

  4. bzoj 1497 [NOI2006]最大获利【最大权闭合子图+最小割】

    不要被5s时限和50000点数吓倒!大胆网络流!我一个5w级别的dinic只跑了1s+! 看起来没有最大权闭合子图的特征--限制,实际上还是有的. 我们需要把中转站看成负权点,把p看成点权,把客户看成 ...

  5. 洛谷 P2762 太空飞行计划问题 【最大权闭合子图+最小割】

    --一道难在读入的题. 最后解决方案直接getline一行然后是把读优拆掉放进函数,虽然很丑但是过了. 然后就是裸的最大权闭合子图了,把仪器当成负权点向t连流量为其价格的边,s向实验连流量为实验报酬的 ...

  6. BZOJ 1565 / P2805 [NOI2009]植物大战僵尸 (最大权闭合子图 最小割)

    题意 自己看吧 BZOJ传送门 分析 - 这道题其实就是一些点,存在一些二元限制条件,即如果要选uuu则必须选vvv.求得到的权值最大是多少. 建一个图,如果选uuu必须选vvv,则uuu向vvv连边 ...

  7. 【最大权闭合子图/最小割】BZOJ3438-小M的作物【待填】

    [题目大意] 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子有1个(就是可以种一棵作物)(用1...n编号),现在,第i种作物种植在A中种植 ...

  8. HDU5855 Less Time, More profit(最大权闭合子图)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5855 Description The city planners plan to build ...

  9. 2018.11.06 NOIP训练 最大获利(profit)(01分数规划+最大权闭合子图)

    传送门 好题啊. ∑i<jpi,jK∗(200−K)>X\frac{\sum_{i<j}p_{i,j}}{K*(200-K)}>XK∗(200−K)∑i<j​pi,j​​ ...

随机推荐

  1. 静态代理,jdbc动态代理和cglib动态代理

    静态代理 1.定义抽象主题接口. package com.zhangguo.Spring041.aop02; /** * 接口 * 抽象主题 */ public interface IMath { / ...

  2. Redis和SpringDataRedis

    一.Redis简介 ​ Redis是用C语言开发的一个开源的高性能键值对(key-value)数据库,运行在内存中,由ANSI C编写.企业开发通常采用Redis来实现缓存.同类的产品还有memcac ...

  3. Rxlifecycle使用详解,解决RxJava内存泄露问题

    http://www.jcodecraeer.com/a/anzhuokaifa/androidkaifa/2015/1122/3711.html

  4. mvc框架 与vuex的介绍

    应用级的状态集中放在store中: 改变状态的方式是提交mutations,这是个同步的事物: 异步逻辑应该封装在action中. const vuex_store = new Vuex.store( ...

  5. Java Socket 连接 Client端 和 Server端

    Client端: import java.io.DataInputStream;import java.io.DataOutputStream;import java.io.IOException;i ...

  6. 迅为7寸Android嵌入式安卓触摸屏,工业一体机方案

    嵌入式安卓触摸屏板卡介绍-工业级核心板: 嵌入式安卓触摸屏功能接口介绍: 品质保障: 核心板连接器:进口连接器,牢固耐用,国产连接器无法比拟(为保证用户自行设计的产品品质,购买核心板用户可免费赠送底板 ...

  7. autorun - 自动装载/卸载CDROMs并在装载后执行/path/to/cdrom/autorun

    总览 autorun [-lmqv?V] [-a EXEC] [-c CDPLAYER] [-e STRING] [-i MILLISEC] [-n STRING] [-t STRING] [--au ...

  8. 为什么java String是固定的 为什么字符串是不可变的

    String类不可变的好处 String是所有语言中最常用的一个类.我们知道在Java中,String是不可变的.final的.Java在运行时也保存了一个字符串池(String pool),这使得S ...

  9. PHP 下基于 php-amqp 扩展的 RabbitMQ 简单用例 (五) -- 自动 ACK、手动 ACK、NACK

    以 Direct 类型的 交换机和 Queue 的 get 方法为例. producer.php // 连接设置 $conConfig = [ 'host' => '127.0.0.1', 'p ...

  10. tensorflow 学习笔记-- tf.reduce_max、tf.sequence_mask

    1.tf.reduce_max函数的作用:计算张量的各个维度上的元素的最大值.例子: import tensorflow as tfmax_value = tf.reduce_max([1, 3, 2 ...