后缀数组 DC3构造法 —— 详解
学习了后缀数组,顺便把DC3算法也看了一下,传说中可以O(n)复杂度求出文本串的height,先比较一下倍增算法和DC3算法好辣。
DC3 倍增法
时间复杂度 O(n)(但是常数很大) O(nlogn)(常数较小)
空间复杂度 O(n) O(n)
编程复杂度 较高 较低
由于在时间复杂度上DC3的常数比较大,再加上编程复杂度比较高,所以在解决问题的时候并不是最优选择。但是学到了后缀数组还是补充一下的好点。
DC3算法的实现:
1:先把文本串的后缀串分成两部分,第一部分是后缀串i mod 3 == 0, 第二部分是i mod 3 != 0,然后先用基数排序对第二部分后缀串排序(按照前三个字符进行排序)。
int *san = sa+n, *rn = r+n, ta=, tb=(n+)/, tbc=, i, j, p;
//ta i mod 3==0的个数,tb i mod 3==1的个数, tbc imod3!=0的个数
for (i=; i<n; i++)
if (i % )
x[tbc ++] = i; r[n] = r[n+] = ;//在文本串后面添加两个0,便于处理
Sort (r+, x, y, tbc, m);
Sort (r+, y, x, tbc, m);
Sort (r, x, y, tbc, m);
然后把suffix[1]与suffix[2]数组连起来,每三个相邻的字符看做一个数,变成这个样子:

操作代码如下:
rn[F(y[])] = ;
for (i=, p=; i<tbc; i++)
rn[F(y[i])] = c0(r, y[i-], y[i])?p-:p++;
//#define F(x) x/3+(x%3==1?0:tb)
//F(x) 求原字符串suffix(i)在新串中的位置
如果p>=tbc的话,也就是说只排列前三个字符就可以区分出第二部分后缀串的顺序了,否则就要进行递归继续对第二部分的串进行排序。
if (p < tbc)
DC3 (rn, san, tbc, p);
else
for (i=; i<tbc; i++)
san[rn[i]] = i;
2:对第一部分后缀来说:
suffix[3*i] = r[3*i] + suffix[3*i+1];
suffix[3*j] = r[3*j] + suffix[3*j+1]; 我们已知i mod 3 == 1 的所有suffix[i]的顺序了,可以利用基数排序很快的求出第一部分后缀的顺序。
for (i=; i<tbc; i++)
if (san[i] < tb)
y[ta++] = san[i]*;
if (n% == )
//对于n%3==1时,不存在suffix[n-1] == r[n] + suffix[n];
y[ta++] = n - ;
Sort (r, y, x, ta, m);//对mod3==0的后缀串排序
3:第一部分后缀数组和第二部分后缀数组都排好序以后,可以对两部分后缀数组进行一次简单的归并排序,然后sa数组就完美呈现了。
//#define G(x) x>=tb?(x-tb)*3+2:x*3+1
//新文本串中suffix(i)在原文本串中的位置
for (i=; i<tbc; i++)
c[y[i] = G(san[i])] = i;
for (i=, j=, p=; i<ta&&j<tbc; p++)
sa[p] = c12 (y[j]%, r, y[j], x[i])?y[j++]:x[i++];
for (; j<tbc; j++)
sa[p++] = y[j];
for (; i<ta; i++)
sa[p++] = x[i];
c12就是比较第一部分与第二部分串的大小:
suffix [3*i] = r[3*i] + suffix[3*i+1];
suffix [3*j+1] = r[3*j+1] + suffix[3*j+2]; 已知suffix[3*i+1]与suffix[3*i+2]所对应的大小关系,可以比较r[3*i]与r[3*j+1]的大小得出最终结果。
suffix [3*i] = r[3*i] + suffix[3*i+1];
suffix [3*j+2] = r[3*j+2] + suffix[3*(j+1)]; 这个我们可以先比较 r[3*i] 与 r[3*j+2] 的大小,然后再比较 suffix[3*i+1] 与 suffix[3*(j+1)] ,这样就把问题转化为了第一种情况咯。
bool c12 (int k, int *r, int a, int b)
{//return 真 suffix[b]大,return false suffix[a]大
if (k == )
return r[a]<r[b] || (r[a]==r[b]&&c[a+]<c[b+]);
return r[a]<r[b] || (r[a]==r[b]&&c12(, r, a+, b+));
}
对于和后缀数组相关的这两个算法,其实并没有什么难点。难理解的点就在于基数排序对数组的使用,手动模拟几遍就OK辣!
最后再附上一个完整的DC3代码
#define F(x) x/3+(x%3==1?0:tb)
#define G(x) x>=tb?(x-tb)*3+2:x*3+1 const int maxn = ;
int c[maxn*], x[maxn*], y[maxn*];
int sa[maxn*], rank[maxn*]; bool c0 (int *r, int a, int b)
{
return r[a]==r[b] && r[a+]==r[b+] && r[a+]==r[b+];
} bool c12 (int k, int *r, int a, int b)
{
//return 真 suffix[b]大,return false suffix[a]大
if (k == )
return r[a]<r[b] || (r[a]==r[b]&&c[a+]<c[b+]);
return r[a]<r[b] || (r[a]==r[b]&&c12(, r, a+, b+));
} void Sort (int *r, int *a, int *b, int n, int m)
{
for (int i=; i<m; i++) c[i] = ;
for (int i=; i<n; i++) c[r[a[i]]] ++;
for (int i=; i<m; i++) c[i] += c[i-];
for (int i=n-; i>=; i--)
b[--c[r[a[i]]]] = a[i];
} void DC3 (int *r, int *sa, int n, int m)
{
int *san = sa+n, *rn = r+n, ta=, tb=(n+)/, tbc=, i, j, p;
for (i=; i<n; i++) if (i % ) x[tbc ++] = i; r[n] = r[n+] = ;
Sort (r+, x, y, tbc, m);
Sort (r+, y, x, tbc, m);
Sort (r, x, y, tbc, m); rn[F(y[])] = ;
for (i=, p=; i<tbc; i++)
rn[F(y[i])] = c0(r, y[i-], y[i])?p-:p++;
//rn[i] 起始位置为i的排名 if (p < tbc)
DC3 (rn, san, tbc, p);
else
for (i=; i<tbc; i++)
san[rn[i]] = i; for (i=; i<tbc; i++)
if (san[i] < tb)
y[ta++] = san[i]*; if (n% == )
y[ta++] = n - ; Sort (r, y, x, ta, m);//对mod3==0的后缀串排序
for (i=; i<tbc; i++)
c[y[i] = G(san[i])] = i; for (i=, j=, p=; i<ta&&j<tbc; p++)
sa[p] = c12 (y[j]%, r, y[j], x[i])?y[j++]:x[i++];
for (; j<tbc; j++)
sa[p++] = y[j];
for (; i<ta; i++)
sa[p++] = x[i]; return;
}
后缀数组 DC3构造法 —— 详解的更多相关文章
- [八分之一的男人]POJ - 1743 后缀数组 height分组 带详解
题意:求最长不可重叠的相同差值子串的长度 这道题算是拖了好几个月,现在花了点时间应该搞懂了不少,尝试分析一下 我们首先来解决一个退化的版本,求最长不可重叠的相同子串(差值为0) 比如\(aabaaba ...
- RAII惯用法详解
[1]什么是RAII惯用法? RAII是Resource Acquisition Is Initialization的缩写,意为“资源获取即初始化”. 它是C++之父Bjarne Stroustrup ...
- GoLang基础数据类型--->数组(array)详解
GoLang基础数据类型--->数组(array)详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Golang数组简介 数组是Go语言编程中最常用的数据结构之一.顾名 ...
- 数据结构与算法系列2 线性表 使用java实现动态数组+ArrayList源码详解
数据结构与算法系列2 线性表 使用java实现动态数组+ArrayList源码详解 对数组有不了解的可以先看看我的另一篇文章,那篇文章对数组有很多详细的解析,而本篇文章则着重讲动态数组,另一篇文章链接 ...
- POJ - 2406 Power Strings (后缀数组DC3版)
题意:求最小循环节循环的次数. 题解:这个题其实可以直接用kmp去求最小循环节,然后在用总长度除以循环节.但是因为在练后缀数组,所以写的后缀数组版本.用倍增法会超时!!所以改用DC3法.对后缀数组还不 ...
- C语言 后缀自增的优先级详解
// ++ 后缀自增与取地址& ,提领 * (指针里的操作符)的优先级比较 #include<stdio.h> #include<stdlib.h> #include& ...
- POJ 3581 Sequence ——后缀数组 最小表示法
[题目分析] 一见到题目,就有了一个显而易见obviously的想法.只需要每次找到倒过来最小的那一个字符串翻转就可以了. 然而事情并不是这样的,比如说505023这样一个字符串,如果翻转了成为320 ...
- 中文分词系列(一) 双数组Tire树(DART)详解
1 双数组Tire树简介 双数组Tire树是Tire树的升级版,Tire取自英文Retrieval中的一部分,即检索树,又称作字典树或者键树.下面简单介绍一下Tire树. 1.1 Tire树 Trie ...
- SLAM入门之视觉里程计(6):相机标定 张正友经典标定法详解
想要从二维图像中获取到场景的三维信息,相机的内参数是必须的,在SLAM中,相机通常是提前标定好的.张正友于1998年在论文:"A Flexible New Technique fro Cam ...
随机推荐
- 使用$.when()解决AJAX异步难题之:多个ajax操作进行逻辑与(and)
上一篇文章"JQuery.deferred提供的promise解决方式",提到了javascript异步操作的3个问题,以及javascript Promise入门.如今我们看下怎 ...
- 通视频URL截取第一帧图片
为了方便直接给UIImage加个类别,以后什么时候使用可以直接调用. #import <UIKit/UIKit.h> @interface UIImage (Video) /** 通过视频 ...
- <十二>读<<大话设计模式>>之状态模式
对于状态模式,<<大话设计模式>>是以人从上班到下班到加班的状态来展开讲述的.状态模式事实上就是某一个对象在某个过程或者时间的一个状态记录,可是这个状态的顺序不能发生变化.在程 ...
- 深入浅出 - Android系统移植与平台开发(九)- Android系统system_server及Home启动
3.3 Zygote守护进程与system_server进程 Android的执行环境和Java执行环境有着本质的差别,在Android系统中每一个应用程序都是一独立的进程,当一个进程死掉时,不会影响 ...
- nodejs什么值得买自动签到自动评论定时任务
本项目是基于nodejs开发,实现的功能是,什么值得买自动签到,自动评论功能,自动发邮件,支持多人多账号运行 目的是为了,解放双手,轻松获取什么值得买的经验和积分,得到更高的等级,从而突破很会员等级限 ...
- mongo-java-driver
http://mvnrepository.com/artifact/org.mongodb/mongo-java-driver/3.5.0 <!-- https://mvnrepository. ...
- 两篇C++和VC++字符串的文章
有空挨个摘录写点心得 http://www.cnblogs.com/maowang1991/p/3572304.html http://www.cnblogs.com/maowang1991/p/35 ...
- oracle重命名数据文件
重命名数据文件 方法1: sql>alter tablespace users offline; sql>host cp /u01/app/oracle/oradata/orcl/us ...
- liunx下的权限详解
用户组 在linux中的每个用户必须属于一个组,不能独立于组外.在linux中每个文件有所有者.所在组.其它组的概念 - 所有者 - 所在组 - 其它组 - 改变用户所在的组 所有者 一般为文件的创建 ...
- 我自己常用的Watir自动化测试结果报表
特别声明:该报表框架不是我搭建的.