在数据清洗过程中,有时不仅希望去掉脏数据,更希望定位脏数据的位置,例如从csv里面定位非数字和字母单元格的位置,在使用isdigit()、isalpha()、isalnum()时无法判断浮点数,会将浮点数都判断为特殊符号。

以下为样例数据,希望定位特殊符号的位置。

实现代码为:

# -*- coding: utf-8 -*-
"""
Created on Tue Dec 6 14:37:12 2016 @author: user
""" import csv
import re csv_reader = csv.reader(open('D:/工作文件夹/Pyhton/20081003.csv',encoding = 'utf-8'))
rows = 0 #方法一、此方法可用于输出所有数值,过滤非数值(反之亦然成立)
'''
def is_a_num(string):
try:
float(string)#return float(string)
except:
return string#return '' for row in csv_reader:
if row != ['FIELD_000','FIELD_001','FIELD_002','FIELD_003','FIELD_004','FIELD_005','FIELD_006','FIELD_007','FIELD_008','FIELD_009','FIELD_010','FIELD_011','FIELD_012','FIELD_013','FIELD_014','FIELD_015','FIELD_016','FIELD_017','FIELD_018','FIELD_019','FIELD_020','FIELD_021','FIELD_022','FIELD_023','FIELD_024','FIELD_025','FIELD_026','FIELD_027','FIELD_028','FIELD_029','FIELD_030','FIELD_031','FIELD_032','FIELD_033','FIELD_034','FIELD_035','FIELD_036','FIELD_037','FIELD_038','FIELD_039','FIELD_040','FIELD_041','FIELD_042','FIELD_043','FIELD_044','FIELD_045','FIELD_046','FIELD_047','FIELD_048','FIELD_049','FIELD_050','FIELD_051','FIELD_052','FIELD_053','FIELD_054','FIELD_055','FIELD_056','FIELD_057','FIELD_058','FIELD_059','FIELD_060','FIELD_061','FIELD_062','FIELD_063','FIELD_064','FIELD_065','FIELD_066','FIELD_067','FIELD_068','FIELD_069','FIELD_070','FIELD_071','FIELD_072','FIELD_073','FIELD_074','FIELD_075','FIELD_076','FIELD_077','FIELD_078','FIELD_079','FIELD_080','FIELD_081','FIELD_082','FIELD_083','FIELD_084','FIELD_085','FIELD_086','FIELD_087','FIELD_088','FIELD_089','FIELD_090','FIELD_091','FIELD_092','FIELD_093','FIELD_094','FIELD_095','FIELD_096','FIELD_097','FIELD_098','FIELD_099','FIELD_100','FIELD_101','FIELD_102','FIELD_103','FIELD_104','FIELD_105','FIELD_106','FIELD_107','FIELD_108','FIELD_109','FIELD_110','FIELD_111','FIELD_112','FIELD_113','FIELD_114','FIELD_115','FIELD_116','FIELD_117','FIELD_118','FIELD_119','FIELD_120','FIELD_121','FIELD_122','FIELD_123','FIELD_124','FIELD_125','FIELD_126','FIELD_127','FIELD_128','FIELD_129','FIELD_130','FIELD_131','FIELD_132','FIELD_133','FIELD_134','FIELD_135','FIELD_136','FIELD_137','FIELD_138','FIELD_139','FIELD_140','FIELD_141','FIELD_142','FIELD_143','FIELD_144','FIELD_145','FIELD_146','FIELD_147','FIELD_148','FIELD_149','FIELD_150','FIELD_151','FIELD_152','FIELD_153','FIELD_154','FIELD_155','FIELD_156','FIELD_157','FIELD_158','FIELD_159','FIELD_160','FIELD_161','FIELD_162','FIELD_163','FIELD_164','FIELD_165','FIELD_166','FIELD_167','FIELD_168','FIELD_169','FIELD_170','FIELD_171','FIELD_172','FIELD_173','FIELD_174','FIELD_175','FIELD_176','FIELD_177','FIELD_178','FIELD_179','FIELD_180','FIELD_181','FIELD_182','FIELD_183','FIELD_184','FIELD_185','FIELD_186','FIELD_187','FIELD_188','FIELD_189','FIELD_190','FIELD_191','FIELD_192','FIELD_193','FIELD_194','FIELD_195','FIELD_196','FIELD_197','FIELD_198','FIELD_199','FIELD_200','FIELD_201','FIELD_202','FIELD_203','FIELD_204','FIELD_205','FIELD_206','FIELD_207','FIELD_208','FIELD_209','FIELD_210','FIELD_211','FIELD_212','FIELD_213','FIELD_214','FIELD_215','FIELD_216','FIELD_217','FIELD_218','FIELD_219','FIELD_220','FIELD_221','FIELD_222','FIELD_223','FIELD_224','FIELD_225','FIELD_226','FIELD_227','FIELD_228','FIELD_229','FIELD_230','FIELD_231','FIELD_232','FIELD_233','FIELD_234','FIELD_235','FIELD_236','FIELD_237','FIELD_238','FIELD_239','FIELD_240','FIELD_241','FIELD_242','FIELD_243','FIELD_244','FIELD_245','FIELD_246','FIELD_247','FIELD_248','FIELD_249','FIELD_250','FIELD_251','FIELD_252','FIELD_253','FIELD_254','FIELD_255','FIELD_256','FIELD_257','FIELD_258','FIELD_259','FIELD_260','FIELD_261','FIELD_262','FIELD_263','FIELD_264','FIELD_265','FIELD_266','FIELD_267','FIELD_268','FIELD_269','FIELD_270','FIELD_271','FIELD_272','FIELD_273','FIELD_274','FIELD_275','FIELD_276','FIELD_277','FIELD_278','FIELD_279','FIELD_280','FIELD_281','FIELD_282','FIELD_283','FIELD_284','FIELD_285','FIELD_286','FIELD_287','FIELD_288','FIELD_289','FIELD_290','FIELD_291','FIELD_292','FIELD_293','FIELD_294','FIELD_295','FIELD_296','FIELD_297','FIELD_298','FIELD_299','FIELD_300','FIELD_301','FIELD_302','FIELD_303','FIELD_304','FIELD_305','FIELD_306','FIELD_307','FIELD_308','FIELD_309','FIELD_310','FIELD_311','FIELD_312','FIELD_313','FIELD_314','FIELD_315','FIELD_316','FIELD_317','FIELD_318','FIELD_319','FIELD_320','FIELD_321','FIELD_322','FIELD_323','FIELD_324','FIELD_325','FIELD_326']:
rows += 1
columns = 0
for Factor in row[0:]:
if is_a_num(Factor) and Factor != '':
# if not Factor.isalnum() and Factor != '' :
columns += 1
print(rows,columns,Factor)
'''
#方法二
for row in csv_reader:
if row != ['FIELD_000','FIELD_001','FIELD_002','FIELD_003','FIELD_004','FIELD_005','FIELD_006','FIELD_007','FIELD_008','FIELD_009','FIELD_010','FIELD_011','FIELD_012','FIELD_013','FIELD_014','FIELD_015','FIELD_016','FIELD_017','FIELD_018','FIELD_019','FIELD_020','FIELD_021','FIELD_022','FIELD_023','FIELD_024','FIELD_025','FIELD_026','FIELD_027','FIELD_028','FIELD_029','FIELD_030','FIELD_031','FIELD_032','FIELD_033','FIELD_034','FIELD_035','FIELD_036','FIELD_037','FIELD_038','FIELD_039','FIELD_040','FIELD_041','FIELD_042','FIELD_043','FIELD_044','FIELD_045','FIELD_046','FIELD_047','FIELD_048','FIELD_049','FIELD_050','FIELD_051','FIELD_052','FIELD_053','FIELD_054','FIELD_055','FIELD_056','FIELD_057','FIELD_058','FIELD_059','FIELD_060','FIELD_061','FIELD_062','FIELD_063','FIELD_064','FIELD_065','FIELD_066','FIELD_067','FIELD_068','FIELD_069','FIELD_070','FIELD_071','FIELD_072','FIELD_073','FIELD_074','FIELD_075','FIELD_076','FIELD_077','FIELD_078','FIELD_079','FIELD_080','FIELD_081','FIELD_082','FIELD_083','FIELD_084','FIELD_085','FIELD_086','FIELD_087','FIELD_088','FIELD_089','FIELD_090','FIELD_091','FIELD_092','FIELD_093','FIELD_094','FIELD_095','FIELD_096','FIELD_097','FIELD_098','FIELD_099','FIELD_100','FIELD_101','FIELD_102','FIELD_103','FIELD_104','FIELD_105','FIELD_106','FIELD_107','FIELD_108','FIELD_109','FIELD_110','FIELD_111','FIELD_112','FIELD_113','FIELD_114','FIELD_115','FIELD_116','FIELD_117','FIELD_118','FIELD_119','FIELD_120','FIELD_121','FIELD_122','FIELD_123','FIELD_124','FIELD_125','FIELD_126','FIELD_127','FIELD_128','FIELD_129','FIELD_130','FIELD_131','FIELD_132','FIELD_133','FIELD_134','FIELD_135','FIELD_136','FIELD_137','FIELD_138','FIELD_139','FIELD_140','FIELD_141','FIELD_142','FIELD_143','FIELD_144','FIELD_145','FIELD_146','FIELD_147','FIELD_148','FIELD_149','FIELD_150','FIELD_151','FIELD_152','FIELD_153','FIELD_154','FIELD_155','FIELD_156','FIELD_157','FIELD_158','FIELD_159','FIELD_160','FIELD_161','FIELD_162','FIELD_163','FIELD_164','FIELD_165','FIELD_166','FIELD_167','FIELD_168','FIELD_169','FIELD_170','FIELD_171','FIELD_172','FIELD_173','FIELD_174','FIELD_175','FIELD_176','FIELD_177','FIELD_178','FIELD_179','FIELD_180','FIELD_181','FIELD_182','FIELD_183','FIELD_184','FIELD_185','FIELD_186','FIELD_187','FIELD_188','FIELD_189','FIELD_190','FIELD_191','FIELD_192','FIELD_193','FIELD_194','FIELD_195','FIELD_196','FIELD_197','FIELD_198','FIELD_199','FIELD_200','FIELD_201','FIELD_202','FIELD_203','FIELD_204','FIELD_205','FIELD_206','FIELD_207','FIELD_208','FIELD_209','FIELD_210','FIELD_211','FIELD_212','FIELD_213','FIELD_214','FIELD_215','FIELD_216','FIELD_217','FIELD_218','FIELD_219','FIELD_220','FIELD_221','FIELD_222','FIELD_223','FIELD_224','FIELD_225','FIELD_226','FIELD_227','FIELD_228','FIELD_229','FIELD_230','FIELD_231','FIELD_232','FIELD_233','FIELD_234','FIELD_235','FIELD_236','FIELD_237','FIELD_238','FIELD_239','FIELD_240','FIELD_241','FIELD_242','FIELD_243','FIELD_244','FIELD_245','FIELD_246','FIELD_247','FIELD_248','FIELD_249','FIELD_250','FIELD_251','FIELD_252','FIELD_253','FIELD_254','FIELD_255','FIELD_256','FIELD_257','FIELD_258','FIELD_259','FIELD_260','FIELD_261','FIELD_262','FIELD_263','FIELD_264','FIELD_265','FIELD_266','FIELD_267','FIELD_268','FIELD_269','FIELD_270','FIELD_271','FIELD_272','FIELD_273','FIELD_274','FIELD_275','FIELD_276','FIELD_277','FIELD_278','FIELD_279','FIELD_280','FIELD_281','FIELD_282','FIELD_283','FIELD_284','FIELD_285','FIELD_286','FIELD_287','FIELD_288','FIELD_289','FIELD_290','FIELD_291','FIELD_292','FIELD_293','FIELD_294','FIELD_295','FIELD_296','FIELD_297','FIELD_298','FIELD_299','FIELD_300','FIELD_301','FIELD_302','FIELD_303','FIELD_304','FIELD_305','FIELD_306','FIELD_307','FIELD_308','FIELD_309','FIELD_310','FIELD_311','FIELD_312','FIELD_313','FIELD_314','FIELD_315','FIELD_316','FIELD_317','FIELD_318','FIELD_319','FIELD_320','FIELD_321','FIELD_322','FIELD_323','FIELD_324','FIELD_325','FIELD_326']:
rows += 1
columns = 0
for Factor in row[0:]:
if re.match("[.0-9A-Z]+$", Factor) == None and Factor != '':
# if not Factor.isalnum() and Factor != '' :
columns += 1
print(rows,columns,Factor)

其中,re.match为正则表达式:

re.match的函数原型为:re.match(pattern, string, flags)

第一个参数是正则表达式,这里为"[.0-9A-Z]+$",匹配[]中的任何字符至少1次,如果匹配成功,则返回一个Match,否则返回一个None;

第二个参数表示要匹配的字符串;

第三个参数是标致位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等。

Python 如何在csv中定位非数字和字母的符号的更多相关文章

  1. Python 解决写入csv中间隔一行空行问题

    转载解决写入csv中间隔一行空行问题 写入csv: with open(birth_weight_file,'w') as f: writer=csv.writer(f) writer.writero ...

  2. Python的驻留机制(仅对数字,字母,下划线有效)

    Python的驻留机制及为在同一运行空间内,当两变量的值相同,则地址也相同. 举例: a = 'abc' b = 'abc' print(id(a)) print(id(b)) 以上示例为驻留机制有效 ...

  3. python 找出字符串中出现次数最多的字母

    # 请大家找出s=”aabbccddxxxxffff”中 出现次数最多的字母 # 第一种方法,字典方式: s="aabbccddxxxxffff" count ={} for i ...

  4. [C++/Python] 如何在C++中使用一个Python类? (Use Python-defined class in C++)

    最近在做基于OpenCV的车牌识别, 其中需要用到深度学习的一些代码(Python), 所以一开始的时候开发语言选择了Python(祸患之源). 固然现在Python的速度不算太慢, 但你一定要用Py ...

  5. winform中如何在TextBox中只能输入数字(可以带小数点)

    可以采用像web表单验证的方式,利用textbox的TextChanged事件,每当textbox内容变化时,调用正则表达式的方法验证,用一个label在text后面提示输入错误,具体代码如下: pr ...

  6. C# winform如何在textbox中判断输入的是字母还是数字?

    1.用正规式using System.Text.RegularExpressions; string pattern = @"^\d+(\.\d)?$";if(Text1.Text ...

  7. python 如何在 command 中能够找到 其他module

    部分代码如下: __author__ = 'norsd' # coding=utf8 # 上句说明使用utf8编码 try: import os import sys import time #关键语 ...

  8. js判断字符串中是否有数字和字母

    var p = /[0-9]/; var b = p.test(string);//true,说明有数字var p = /[a-z]/i; var b = p.test(string);//true, ...

  9. sql 判断字符串中是否含有数字和字母

    判断是否含有字母 select PATINDEX('%[A-Za-z]%', ‘ads23432’)=0 (如果存在字母,结果<>1) 判断是否含有数字 PATINDEX('%[0-9]% ...

随机推荐

  1. 【hdu 1043】Eight

    [题目链接]:http://acm.hdu.edu.cn/showproblem.php?pid=1043 [题意] 会给你很多组数据; 让你输出这组数据到目标状态的具体步骤; [题解] 从12345 ...

  2. hdu 1874 dijkstra 队列实现 比数组高效特别在稀疏图

    参考  http://blog.csdn.net/zhuyingqingfen/article/details/6370561 刘汝佳白皮书 #include<stdio.h> #incl ...

  3. select节点clone全解析

    select节点clone全解析 2009-12-18 在开发ns-log项目中,统计分类有复制的功能.由于之前的统计分类中的数据是通过JS赋值进去的,之后用户可能又进行了修改,发现进行节点克隆时,出 ...

  4. Hihocoder 1325 (splay)

    Problem 平衡树 Treap 题目大意 维护一个数列,支持两种操作. 操作1:添加一个数x. 操作2:询问不超过x的最大的数. 解题分析 尝试了一下用指针来写splay,感觉写起来还是比较流畅的 ...

  5. 设置Linux使用SMTP服务发送邮件

    很多时候我们需要知道服务器的运行状态,比如发生了异常的报警.数据库备份的状态等,假如服务器自动跟你汇报那就好了,我们可以通过设置当触发某些条件时让服务器发送邮件给你,这样你就可以了解你的服务器的状态怎 ...

  6. wait、notify应用场景(生产者-消费者模式)

    Java实现生产者消费者的方式有:wait && notify.BlockingQueue.Lock && Condition等 wait.notify注意事项:(1) ...

  7. 洛谷—— P1657 选书

    https://www.luogu.org/problem/show?pid=1657 题目描述 学校放寒假时,信息学奥赛辅导老师有1,2,3……x本书,要分给参加培训的x个人,每人只能选一本书,但是 ...

  8. MyBatis与Spring MVC结合时,使用DAO注入出现:Invocation of init method failed; nested exception is java.lang.IllegalArgumentException: Property 'sqlSessionFactory' or 'sqlSessionTemplate' are required

    错误源自使用了这个例子:http://www.yihaomen.com/article/java/336.htm,如果运行时会出现如下错误: Invocation of init method fai ...

  9. jq页面提示或者页面牵引浏览--页面的指引向导插件

    1.看看插件效果吧 2. html 文件 :index.html <!DOCTYPE html> <html lang="en"> <head> ...

  10. Android: 阻止ScrollView随着数据加载自动滚动

    当ScrollView中有类似GridView的控件时,当数据加载后ScrollView会自动滚动.要阻止这种事情发生,我们需要做的是在ScrollView的下层容器中添加android:descen ...