传送门:http://codeforces.com/contest/990/problem/D

这是一个构造问题。

构造一张n阶简单无向图G,使得其连通分支个数为a,且其补图的连通分支个数为b。

对于一张n阶简单无向图G,若此图不连通,则其补图是连通的。

证明:

首先,在简单无向图G中,若结点u、v(u≠v)不连通,则在其补图中,u、v必然连通。

将图G=<V,E>划分为k个连通分支,Gi=<Vi,Ei>,i=1,2,...,k。在V中任取两点u、v(u≠v)。

若u∈Vi,v∈Vj,且i≠j,则u、v在图G中不连通,则u、v必然在其补图中连通;

若u,v∈Vi,则必然存在w∈Vj,且i≠j,使得u、w和v、w在补图中连通。

于是,在题中,a、b中至少有一个为1。

接下来构造连通分支:若一个n阶简单无向图有k(k≥2)个连通分支,则可以构造其连通分支分别为{1},{2},...,{k-1},{k,k+1,...,n}。

参考程序如下:

#include <bits/stdc++.h>
using namespace std; #define MAX_N 1000 bool adj[MAX_N][MAX_N]; int main(void)
{
int n, a, b;
cin >> n >> a >> b;
bool flag = ;
if (a != && b != ) flag = ;
if ((n == || n == ) && (a + b == )) flag = ;
if (!flag) {
cout << "NO" << endl;
return ;
}
cout << "YES" << endl;
if (b == ) {
memset(adj, , sizeof(adj));
for (int i = a; i < n; i++) {
adj[i - ][i] = ;
adj[i][i - ] = ;
}
}
else {
memset(adj, -, sizeof(adj));
for (int i = ; i < n; i++) adj[i][i] = ;
for (int i = b; i < n; i++) {
adj[i - ][i] = ;
adj[i][i - ] = ;
}
}
for (int i = ; i < n; i++) {
for (int j = ; j < n; j++)
putchar(adj[i][j]? '': '');
putchar('\n');
}
}

Codeforces 990D - Graph And Its Complement的更多相关文章

  1. CodeForces 990D Graph And Its Complement(图和补图、构造)

    http://codeforces.com/problemset/problem/990/D 题意: 构造一张n阶简单无向图G,使得其连通分支个数为a,且其补图的连通分支个数为b. 题解: 第一眼看到 ...

  2. CF 990D Graph And Its Complement 第十八 构造、思维

    Graph And Its Complement time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  3. Graph And Its Complement CodeForces - 990D(思维构造)

    题意: 图中有n个点,开始有a个连通块,然后连着的边断开,不连的边连上,变为b个连通块,输出原图的邻接矩阵. 解析: 原图中连通块大于1的图,经过上述操作后,一定变成只有1个连通块的图. 若n != ...

  4. Codeforces 405E Graph Cutting

    Graph Cutting 不会写.. dfs的过程中把回边丢到它的祖先中去, 回溯的时候两两配对.感觉好神奇啊. #include<bits/stdc++.h> #define LL l ...

  5. [Codeforces 623A] Graph and String

    [题目链接] http://codeforces.com/contest/623/problem/A [算法] 首先 , 所有与其他节点都有连边的节点需标号为'b' 然后 , 我们任选一个节点 , 将 ...

  6. Codeforces 1499G - Graph Coloring(带权并查集+欧拉回路)

    Codeforces 题面传送门 & 洛谷题面传送门 一道非常神仙的题 %%%%%%%%%%%% 首先看到这样的设问,做题数量多一点的同学不难想到这个题.事实上对于此题而言,题面中那个&quo ...

  7. codeforces 624C Graph and String

    C. Graph and String time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  8. codeforces 623A. Graph and String 构造

    题目链接 给出一个图, 每个节点只有三种情况, a,b, c. a能和a, b连边, b能和a, b, c,连边, c能和b, c连边, 且无重边以及自环.给出初始的连边情况, 判断这个图是否满足条件 ...

  9. Codeforces 1144F Graph Without Long Directed Paths (DFS染色+构造)

    <题目链接> 题目大意:给定一个无向图,该无向图不含自环,且无重边.现在要你将这个无向图定向,使得不存在任何一条路径长度大于等于2.然后根输入边的顺序,输出构造的有向图.如果构造的边与输入 ...

随机推荐

  1. 基于PHP自带的mail函数实现发送邮件以及带有附件的邮件功能

    PHPmail函数简介 bool mail ( string $to , string $subject , string $message [, string $additional_headers ...

  2. robotframework - Edit编辑器

    1.测试项目&套件 提供的Edit编辑器 2.在 Edit 标签页中主要分:加载外部文件.定义内部变量.定义元数据等三个部分. (1):加载外部文件Add Library:加载测试库,主要是[ ...

  3. 使用nginx加zuul配置

    配置文件 $ ls -lrt -rw-r--r-- 1 root root 826 May 10 10:56 nginx.conf $ pwd /etc/nginx 增加配置 在http {}里 up ...

  4. sourcetree跳过注册方法

    很人用git命令行不熟练,那么可以尝试使用sourcetree进行操作. 然鹅~~sourcetree又一个比较严肃的问题就是,很多人不会跳过注册或者操作注册. 废话不多,我们直接开始跳过注册阶段的操 ...

  5. [BZOJ3223/Tyvj1729]文艺平衡树

    Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列 其中需要提供以下操作: 翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区间是[2,4]的话,结果是5 2 3 ...

  6. 题解报告:poj 3669 Meteor Shower(bfs)

    Description Bessie hears that an extraordinary meteor shower is coming; reports say that these meteo ...

  7. ACM_求N^N的前5位数和后5位数(数论)

    NNNNN Time Limit: 2000/1000ms (Java/Others) Problem Description: 对于整数N,求N^N的前5位和后5位(1057题加强版) Input: ...

  8. 转 awr自动收集脚本

    1. remote get awr report #!/usr/bin/ksh ####sample: sh awr.sh 20170515 20170516 AWR ### default it w ...

  9. SpringBoot-redis-session

    配置pom <parent> <groupId>org.springframework.boot</groupId> <artifactId>sprin ...

  10. Asp.net:MVC认识

    用MVC框架好长一段时间,发现每天都是写业务代码,不想每天只为了工作而写代码,想把工作中认识的MVC框架,遇到的问题,有时候天天在用,但是不知道里面是什么东西,什么原理,为啥這样写等一系列问题.进行梳 ...