LightOJ1125 Divisible Group Sums
Divisible Group Sums
Given a list of N numbers you will be allowed to choose any M of them. So you can choose in NCM ways. You will have to determine how many of these chosen groups have a sum, which is divisible by D.
Input
Input starts with an integer T (≤ 20), denoting the number of test cases.
The first line of each case contains two integers N (0 < N ≤ 200) and Q (0 < Q ≤ 10). Here N indicates how many numbers are there and Q is the total number of queries. Each of the next N lines contains one 32 bit signed integer. The queries will have to be answered based on these N numbers. Each of the next Q lines contains two integers D (0 < D ≤ 20) and M (0 < M ≤ 10).
Output
For each case, print the case number in a line. Then for each query, print the number of desired groups in a single line.
Sample Input
2
10 2
1
2
3
4
5
6
7
8
9
10
5 1
5 2
5 1
2
3
4
5
6
6 2
Sample Output
Case 1:
2
9
Case 2:
1
从n个数字里面取m个有C(n,m)种取法,问有多少种取法使得总和是D的倍数
因为询问好多组(m,d),所以每次都要对不同的d先取模,然后显然就是个背包啦,数字不超过d,只取m个,最大容量只有200
然后特么给的ai还有负数,,,我真是,,,
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<ctime>
#define LL long long
#define inf 0x7ffffff
#define pa pair<LL,int>
#define mkp(a,b) make_pair(a,b)
using namespace std;
inline LL read()
{
LL x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,q;
int a[];
int b[];
LL f[][];
inline void work(int cur)
{
printf("Case %d:\n",cur);
n=read();q=read();
for (int i=;i<=n;i++)a[i]=read();
for (int i=;i<=q;i++)
{
int mod=read(),m=read();
memset(f,,sizeof(f));f[][]=;
for (int j=;j<=n;j++)b[j]=(a[j]%mod+mod)%mod;
for (int j=;j<=n;j++)
{
for (int k=m;k>=;k--)
for (int l=m*mod;l>=b[j];l--)
f[k][l]+=f[k-][l-b[j]];
}
LL sum=;
for (int j=;j<=m*mod;j+=mod)sum+=f[m][j];
printf("%lld\n",sum);
}
}
int main()
{
int T=read(),tt=;
while (T--)work(++tt);
}
LightOJ 1125
LightOJ1125 Divisible Group Sums的更多相关文章
- LightOJ1125 Divisible Group Sums(DP)
题目问从N个数中取出M个数,有多少种取法使它们的和能被D整除. dp[i][j][k]表示,前i个数取出j个数模D的余数为k的方案数 我用“我为人人”的方式来转移,就从i到i+1转移,对于第i+1个数 ...
- Light oj 1125 - Divisible Group Sums (dp)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1125 题意: 给你n个数,q次询问,每次询问问你取其中m个数是d的整数倍的方案 ...
- Divisible Group Sums
Divisible Group Sums Given a list of N numbers you will be allowed to choose any M of them. So you c ...
- lightoj 1125 - Divisible Group Sums (dp)
Given a list of N numbers you will be allowed to choose any M of them. So you can choose in NCM ways ...
- UVa 10616 - Divisible Group Sums
称号:给你n数字.免去m一个,这使得他们可分割d.问:有多少种借贷. 分析:dp,D01背包. 背包整数分区. 首先.整点d.则全部数字均在整数区间[0,d)上: 然后,确定背包容量,最大为20*10 ...
- UVA题目分类
题目 Volume 0. Getting Started 开始10055 - Hashmat the Brave Warrior 10071 - Back to High School Physics ...
- 一位学长的ACM总结(感触颇深)
发信人: fennec (fennec), 信区: Algorithm 标 题: acm 总结 by fennec 发信站: 吉林大学牡丹园站 (Wed Dec 8 16:27:55 2004) AC ...
- lightoj刷题日记
提高自己的实力, 也为了证明, 开始板刷lightoj,每天题量>=1: 题目的类型会在这边说明,具体见分页博客: SUM=54; 1000 Greetings from LightOJ [简单 ...
- [Swift]LeetCode974. 和可被 K 整除的子数组 | Subarray Sums Divisible by K
Given an array A of integers, return the number of (contiguous, non-empty) subarrays that have a sum ...
随机推荐
- Mysql的Root密码忘记,查看或修改的解决方法
Mysql的Root密码忘记,查看或修改的解决方法:1.首先启动命令行2.在命令行运行:taskkill /f /im mysqld-nt.exe3.继续在命令行运行:mysqld-nt --skip ...
- com.alibaba.dubbo.remoting.RemotingException: Failed to bind NettyServer on /192.168.1.13:20881, cause: Failed to bind to: /0.0.0.0:20881
抛出的异常如上,解决方案是:根据异常信息确定是端口被占用,排查项目是否启动之后没有关闭,在windows命令行中运行如下命令:netstat -ano 检查端口占用的情况,根据pid在任务管理器中杀死 ...
- OpenGL列主元矩阵和列主序存储
OpenGL矩阵要考虑两个点,一个是向量如何排布,一个是矩阵如何存储和恢复. 1.排布 排布决定了运算的顺序.OpenGL使用的是列主元,它的意思就是一个4X4的矩阵是由4个列向量构成(这里的v1,v ...
- Google Colab的一些注意事项
1.执行命令行前面加! 当我们使用python解释器时,我们需要不停地在命令行和IDE 之间切换,当我们需要使用命令行工具时.不过,Jupyter Notebook给了我们在notebook中运行sh ...
- 【原创】最有效解决IE8 position兼容性问题
看了网上的的帖子真是水的一塌糊涂,完全没有解决我和广大网友们的关于ie8下position兼容性问题. 网上有的技术我就不说了 ,大家自行搜索,我想说的重点是 ie8不支持html5的新标签.这是重点 ...
- WPF知识点全攻略07- 数据绑定(Binding)
数据绑定是WPF不得不提,不得不会系列之一 数据绑定简言之,就是把数据源的数据绑定到目标对象的属性上.目标对象可以是承自DependencyProperty的任何可访问的属性或控件,目标属性必须为依赖 ...
- Day5 集合的深浅copy
集合是无序的,不重复的数据集合,它里面的元素是可哈希的(不可变类型),但是集合本身是不可哈希(所以集合做不了字典的键)的.以下是集合最重要的两点: 去重,把一个列表变成集合,就自动去重了. 关系测试, ...
- javaEE(16)_Servlet监听器
一.监听器原理 1.监听器就是一个实现特定接口的普通java程序,这个程序专门用于监听一个java对象的方法调用或属性改变,当被监听对象发生上述事件后,监听器某个方法将立即被执行. 2.监听器典型案例 ...
- ajax通信
AJAX即Asynchronous JavaScript and XML(异步的 JavaScript 和 XML),可以在不重新加载整个网页的基础上,对网页的某部分进行更新. XMLHttpRequ ...
- Ubuntu18.04 下联想电脑 无法连接WIFI问题解决
联想笔记本电脑Ubuntu系统下无法开启无线硬件开关的解决.总结了3个方法,方便以后使用. 方法一: 一.问题描述: 本人使用联想拯救者14IFI笔记本在安装Ubuntu系统时会出现无线硬件开关关闭的 ...