[luoguP2606] [ZJOI2010]排列计数(DP)
如果能够根据题意看出这是一个堆的话,那么就有些思路了。。
首先堆顶必须是最小元素,然后左右儿子可以预处理出来都有多少个数,
把剩余的数任意分配给两个儿子,用排列组合即可
dp(now) = dp(now << 1) * dp(now << 1 | 1) * C(sum[now] - 1, sum[now << 1])
#include <cstdio>
#define N 5000001
#define LL long long int n;
LL p, inv[N], A[N], B[N], s[N]; inline LL C(int x, int y)
{
return A[x] * B[y] % p * B[x - y] % p;
} inline LL dp(int now)
{
if(!s[now] || s[now] == 1) return 1;
return dp(now << 1) * dp(now << 1 | 1) % p * C(s[now] - 1, s[now << 1]) % p;
} int main()
{
int i, j;
scanf("%d %lld", &n, &p);
inv[1] = A[1] = A[0] = B[0] = B[1] = 1;
for(i = 2; i <= n; i++)
{
inv[i] = -(p / i) * inv[p % i] % p;
A[i] = A[i - 1] * i % p;
B[i] = B[i - 1] * inv[i] % p;
}
for(i = 1; i <= n; i++)
for(j = i; j; j >>= 1) s[j]++;
printf("%lld\n", (dp(1) + p) % p);
return 0;
}
[luoguP2606] [ZJOI2010]排列计数(DP)的更多相关文章
- BZOJ.2111.[ZJOI2010]排列计数(DP Lucas)
题目链接 对于\(a_i>a_{i/2}\),我们能想到小根堆.题意就是,求构成大小为\(n\)的小根堆有多少种方案. 考虑DP,\(f[i]\)表示构成大小为\(i\)的小根堆的方案数,那么如 ...
- [ZJOI2010]排列计数 (组合计数/dp)
[ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...
- 【BZOJ2111】[ZJOI2010]排列计数(组合数学)
[BZOJ2111][ZJOI2010]排列计数(组合数学) 题面 BZOJ 洛谷 题解 就是今年九省联考\(D1T2\)的弱化版? 直接递归组合数算就好了. 注意一下模数可以小于\(n\),所以要存 ...
- 洛谷 P2606 [ZJOI2010]排列计数 解题报告
P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...
- P2606 [ZJOI2010]排列计数
P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...
- 洛谷P2606 [ZJOI2010]排列计数(数位dp)
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
- 洛谷P2606 [ZJOI2010]排列计数(组合数 dp)
题意 题目链接 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案 ...
- 【bzoj2111】[ZJOI2010]Perm 排列计数 dp+Lucas定理
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Mogic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Mogic的,答案可能很 ...
- 洛谷P2606 [ZJOI2010]排列计数 组合数学+DP
题意:称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大, ...
随机推荐
- Git .gitignore 设置为全局global
在操作Git时,我们会将修改的内容$git add . 到Git,Git会提示我们哪些文件都修改了.此时提示中会包括系统自动修改的文件,bin文件等.而我们add到Git时,并不希望将这些文件也一同a ...
- 转:android 屏幕适配小结
做android开发,开源嘛,满市场都是凌乱的机型,总少不了适配这样或那样的型号.在这里分享一下自己在开发中用到的方法. 首先要介绍一下drawable-mdpi.drawable-hdpi-1280 ...
- uvm_agent——007(特工)
詹姆斯·邦德作为007的代言人,很好地诠释了agent的含义.但是在计算机系统中agent(代理)指能自主活动的软件或者硬件实体.在UVC中agent作为容器,实例化VIP的所有模块包括driver, ...
- HTTPs与HTTP的性能
(参考:https://blog.csdn.net/chinafire525/article/details/78911734 https://blog.csdn.net/hherima/articl ...
- NTFS文件系统结构及文件恢复
结构部分参考了 https://www.cnblogs.com/mwwf-blogs/archive/2015/05/04/4467687.html 以及P老师的课件. 文件恢复参考: https: ...
- vue 实现走马灯效果
Part.1 问题 在写一个H5页面时遇到一个需求,头部公告需要滚动变换,需要实现一个走马灯效果 Part.2 实现 我的做法:利用 定时器 + CSS3 变换公告数组的顺序 从而实现走马灯效果 ...
- OpenCV2:第八章 界面事件
一.简介 OpenCV中提供了程序界面中的鼠标和键盘事件 二.鼠标事件 // 设置鼠标回调函数 void setMouseCallback ( const string& winname, ...
- 线程调度的问题:Lock Convoy(锁封护)与Priority Inversion(优先级反转)
Lock Convoy(锁封护) [1]Lock Convoy是在多线程并发环境下由于锁的使用而引起的性能退化问题.当多个相同优先级的线程频繁地争抢同一个锁时可能会引起lock convoy问题,一般 ...
- vuejs 中 select 动态填充数据,后台的数据
selected:"A" 对 selected:A 错. 变量不用引号. 内容一定要引号. https://jsfiddle.net/rgnuaw30/ ...
- httpClient类
@SuppressWarnings("finally") public JSONObject doPost(String url, String parms){ if (" ...