传送门

如果能够根据题意看出这是一个堆的话,那么就有些思路了。。

首先堆顶必须是最小元素,然后左右儿子可以预处理出来都有多少个数,

把剩余的数任意分配给两个儿子,用排列组合即可

dp(now) = dp(now << 1) * dp(now << 1 | 1) * C(sum[now] - 1, sum[now << 1])

#include <cstdio>
#define N 5000001
#define LL long long int n;
LL p, inv[N], A[N], B[N], s[N]; inline LL C(int x, int y)
{
return A[x] * B[y] % p * B[x - y] % p;
} inline LL dp(int now)
{
if(!s[now] || s[now] == 1) return 1;
return dp(now << 1) * dp(now << 1 | 1) % p * C(s[now] - 1, s[now << 1]) % p;
} int main()
{
int i, j;
scanf("%d %lld", &n, &p);
inv[1] = A[1] = A[0] = B[0] = B[1] = 1;
for(i = 2; i <= n; i++)
{
inv[i] = -(p / i) * inv[p % i] % p;
A[i] = A[i - 1] * i % p;
B[i] = B[i - 1] * inv[i] % p;
}
for(i = 1; i <= n; i++)
for(j = i; j; j >>= 1) s[j]++;
printf("%lld\n", (dp(1) + p) % p);
return 0;
}

  

[luoguP2606] [ZJOI2010]排列计数(DP)的更多相关文章

  1. BZOJ.2111.[ZJOI2010]排列计数(DP Lucas)

    题目链接 对于\(a_i>a_{i/2}\),我们能想到小根堆.题意就是,求构成大小为\(n\)的小根堆有多少种方案. 考虑DP,\(f[i]\)表示构成大小为\(i\)的小根堆的方案数,那么如 ...

  2. [ZJOI2010]排列计数 (组合计数/dp)

    [ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...

  3. 【BZOJ2111】[ZJOI2010]排列计数(组合数学)

    [BZOJ2111][ZJOI2010]排列计数(组合数学) 题面 BZOJ 洛谷 题解 就是今年九省联考\(D1T2\)的弱化版? 直接递归组合数算就好了. 注意一下模数可以小于\(n\),所以要存 ...

  4. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  5. P2606 [ZJOI2010]排列计数

    P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...

  6. 洛谷P2606 [ZJOI2010]排列计数(数位dp)

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...

  7. 洛谷P2606 [ZJOI2010]排列计数(组合数 dp)

    题意 题目链接 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案 ...

  8. 【bzoj2111】[ZJOI2010]Perm 排列计数 dp+Lucas定理

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Mogic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Mogic的,答案可能很 ...

  9. 洛谷P2606 [ZJOI2010]排列计数 组合数学+DP

    题意:称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大, ...

随机推荐

  1. 简洁js日历控件的使用

    往Web工程添加纯js日历控件 在网上找到了DatePicker.js(http://www.cnblogs.com/shenyixin/archive/2013/03/11/2954156.html ...

  2. java代码(生成日历时间)

    package test; import java.text.SimpleDateFormat; import java.util.Calendar; import java.util.Date; p ...

  3. HDU 4348 I - To the moon 可持续化

    队友套的可持续化线段树,徘徊在RE和MLE之间多发过的... 复用结点新的线段树平均要log2N个结点. 其实离线就好,按照时间顺序组织操作然后dfs. #include <iostream&g ...

  4. 模拟水题之unique两行AC

    https://icpc.njust.edu.cn/Contest/749/A/ Description 小鱼喜欢吃糖果.他有两盒糖果,两盒糖果分别仅由小写字母组成的字符串s和字符串t构成.其中'a' ...

  5. 换个语言学一下 Golang (5)——运算符

    运算符用于在程序运行时执行数学或逻辑运算. Go 语言内置的运算符有: 算术运算符 关系运算符 逻辑运算符 位运算符 赋值运算符 其他运算符 接下来让我们来详细看看各个运算符的介绍. 算术运算符 下表 ...

  6. OpenCascade: 获取边的端点

    FirstV = TopExp::FirstVertex(aEdge1); LastV = TopExp::LastVertex(aEdge1);

  7. ueditor中FileUtils.getTempDirectory()找不到

    2014-6-27 14:22:25 org.apache.catalina.core.StandardWrapperValve invoke SEVERE: Servlet.service() fo ...

  8. 51nod 1265 四点共面——计算几何

    题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1265 以其中某一点向其它三点连向量,若四点共面,这三个向量定义的平行六面体 ...

  9. CentOS7写汇编并编译运行汇编代码

    1.下载nasm编译器 下载地址是https://www.nasm.us/pub/nasm/releasebuilds/ wget https://www.nasm.us/pub/nasm/relea ...

  10. hihoCoder-1093-SPFA

    SPFA的卓越之处就在于处理多点稀疏图,因为点太多的话,我们直接用矩阵来存图的话是存不下的. 所以当我们用邻接矩阵来存图的话,我们就可以用SPFA来解决这类问题,spfa就是优化版的bellman-f ...