\(\mathcal{Description}\)

  Link.

  Bessie 在一张含 \(n\) 个结点的有向图上遍历,站在某个结点上时,她必须按下自己手中 \(m\) 个按钮中处于激活状态的一个才能走向其他结点或终止遍历(不能原地等待)。初始时,所有按钮都处于激活状态,按下 \(i\) 号按钮时,\(i\) 号按钮变为非激活状态,所有编号 \(<i\) 的按钮被激活。

  给定 \(q\) 组形如 \((b_s,s,b_t,t)\) 的询问,求 Bessie 从 \(s\) 出发,第一步按 \(b_s\) 按钮,到 \(t\) 终止遍历,且最后一步按 \(b_t\) 按钮的遍历方案数(遍历顺序或按键不同,方案则不同)。

  \(n,k,q\le60\)。

\(\mathcal{Solution}\)

  大概是图上的高维大力 DP 题叭。

  初步理解按键规则:若把 \(m\) 个按键视为一个二进制数,那么在行动过程中这一数的数值是单增的——因为若按键最高非激活位被重新激活,则一定被更高位激活。

  进一步,我们尝试以“非激活按键的最高位”为切入点设计 DP 状态。令 \(f(h,i,j)\) 表示从 \(i\) 出发(不钦定第一步)走到 \(j\)(不钦定最后一步),且非激活按键最高位不超过 \(h\) 的方案数。转移:

  • 当前方案根本没有取到过 \(h\),\(f(h,i,j)\longleftarrow f(h-1,i,j)\)。

  • 否则,枚举取到 \(h\) 的唯一一点 \(k\),显然有

    \[f(h,i,j)\longleftarrow\sum_{(u,k),(k,v)\in E}f(h-1,i,u)f(h-1,v,j)
    \]

    注意到 \(h\) 和 \(k\) 正在枚举,视为常数,乘法中的两个状态分别只和 \(i\) 与 \(j\) 有关,所以只需要定义辅助状态

    \[g(i)=\sum_{(u,k)\in E}f(h-1,i,u)\\
    h(j)=\sum_{(k,v)\in E}f(h-1,v,j)
    \]

    则有 \(f(h,i,j)\longleftarrow g(i)h(j)\)。


  最后一个问题,求出这个 \(f\) 有什么用呢?

  \(f\) 的定义与询问的差别仅有是否限制第一步和最后一步,所以可以直接把 \(q\) 个限制当做虚拟点丢到状态里,让 \(f\) 成为 \(m\times(n+q)\times(n+q)\) 的状态,\(f(h,i,j)\) 的含义变为:

  • \(i,j\le n\):含义不变;
  • \(i\le n\),\(j>n\):从 \(i\) 出发(不钦定第一步),走到第 \(j-n\) 个询问的 \(t\) 且最后一步为 \(b_t\) 的方案数;
  • \(i>n\),\(j\le n\):从第 \(i-1\) 个询问的 \(s\) 出发,且第一步为 \(b_s\),走到 \(j\)(不钦定最后一步)的方案数;
  • \(i>n\),\(j>n\):同理。

  可见,第 \(i\) 个询问的答案即为 \(f(m,n+i,n+i)\)。转移过程需要变化的地方仅是当枚举的 \((h,k)\) 恰好为某个询问的某个端点时才给 \(g\) 或 \(h\) 添加方案。

  综上,复杂度 \(\mathcal O(mn(n+q)^2)\),代码极度舒适。

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>

#define rep( i, l, r ) for ( int i = l, rpbound##i = r; i <= rpbound##i; ++i )
#define per( i, r, l ) for ( int i = r, rpbound##i = l; i >= rpbound##i; --i ) const int MAXN = 60, MOD = 1e9 + 7;
int n, m, q, f[MAXN + 5][MAXN * 2 + 5][MAXN * 2 + 5];
int lef[MAXN * 2 + 5], rig[MAXN * 2 + 5];
char adj[MAXN + 5][MAXN + 5];
struct Query { int bs, s, bt, t; } qry[MAXN + 5]; inline int mul( const long long a, const int b ) { return a * b % MOD; }
inline int add( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline void addeq( int& a, const int b ) { ( a += b ) >= MOD && ( a -= MOD ); } int main() {
scanf( "%d %d %d", &n, &m, &q );
rep ( i, 1, n ) {
scanf( "%s", adj[i] + 1 );
rep ( j, 1, n ) adj[i][j] ^= '0';
}
rep ( i, 1, q ) {
scanf( "%d %d %d %d", &qry[i].bs, &qry[i].s, &qry[i].bt, &qry[i].t );
}
rep ( h, 1, m ) {
int ( *fcur )[MAXN * 2 + 5]( f[h] );
int ( *flas )[MAXN * 2 + 5]( f[h - 1] );
rep ( i, 1, n + q ) rep ( j, 1, n + q ) fcur[i][j] = flas[i][j];
rep ( k, 1, n ) {
rep ( i, 1, n ) lef[i] = rig[i] = 0;
lef[k] = rig[k] = 1;
rep ( i, 1, q ) {
lef[n + i] = qry[i].bs == h && qry[i].s == k;
rig[n + i] = qry[i].bt == h && qry[i].t == k;
}
rep ( i, 1, n + q ) rep ( j, 1, n ) if ( adj[j][k] ) {
addeq( lef[i], flas[i][j] );
}
rep ( i, 1, n ) rep ( j, 1, n + q ) if ( adj[k][i] ) {
addeq( rig[j], flas[i][j] );
}
rep ( i, 1, n + q ) rep ( j, 1, n + q ) {
addeq( fcur[i][j], mul( lef[i], rig[j] ) );
}
}
}
rep ( i, 1, q ) printf( "%d\n", f[m][n + i][n + i] );
return 0;
}

Solution -「USACO 2020.12 P」Spaceship的更多相关文章

  1. Solution -「USACO 2020.12 P」Sleeping Cows

    \(\mathcal{Description}\)   Link.   有 \(n\) 个牛棚,大小为 \(t_{1..n}\),\(n\) 头奶牛,大小为 \(s_{1..n}\),奶牛只能住进不小 ...

  2. Solution -「SV 2020 Round I」SA

    \(\mathcal{Description}\)   求出处 owo.   给定一个长度为 \(n\),仅包含小写字母的字符串 \(s\),问是否存在长度为 \(n\),仅包含小写字母的字符串 \( ...

  3. Solution -「SV 2020 Round I」「SRM 551 DIV1」「TC 12141」SweetFruits

    \(\mathcal{Description}\)   link.   给定 \(n\) 个水果,每个结点可能有甜度 \(v_i\),或不甜(\(v_i=-1\)).现在把这些水果串成一棵无根树.称一 ...

  4. [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞

    [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞 试题描述 到河北省 见斯大林 / 在月光下 你的背影 / 让我们一起跳舞吧 うそだよ~ 河北省怎么可能有 Stalin. ...

  5. Solution -「2020.12.26」 模拟赛

    0x00 前言 一些吐槽. 考得很变态诶,看每道题平均两秒的时限就知道了... T1 降智了想到后缀懒得打. T2 口胡了假优化,结果和暴力分一样?? T3 黑题还绑点?? \(50 + 80 + 0 ...

  6. Solution -「ZJOI 2020」「洛谷 P6631」序列

    \(\mathcal{Description}\)   Link.   给定一个长为 \(n\) 的非负整数序列 \(\lang a_n\rang\),你可以进行如下操作: 取 \([l,r]\),将 ...

  7. Solution -「JOISC 2020」「UOJ #509」迷路的猫

    \(\mathcal{Decription}\)   Link.   这是一道通信题.   给定一个 \(n\) 个点 \(m\) 条边的连通无向图与两个限制 \(A,B\).   程序 Anthon ...

  8. Solution -「NOI 2020」「洛谷 P6776」超现实树

    \(\mathcal{Description}\)   Link.   对于非空二叉树 \(T\),定义 \(\operatorname{grow}(T)\) 为所有能通过若干次"替换 \( ...

  9. Solution -「FJWC 2020」人生

    \(\mathcal{Description}\)   OurOJ.   有 \(n\) 个结点,一些结点有染有黑色或白色,其余待染色.将 \(n\) 个结点染上颜色并连接有向边,求有多少个不同(结点 ...

随机推荐

  1. [ SQLAlchemy ] 经验总结、QA

    1.filter 和 filter_by [ 共同点 ]:查询后,用于过滤数据 [ 不同点 ]: 1.filter:过滤查询后的数据,用SQL表达式 session.query(MyClass).fi ...

  2. Go的日志库go-logging

    配置文件config.yaml log: prefix: '[MY-LOG] ' log-file: true stdout: 'DEBUG' file: 'DEBUG' config/config. ...

  3. 大厂面试来了,欢聚时代四年多经验的Java面经

    前言(也就是废话) 今年年底,额,不对,应该说是去年了,我开始进行了一个多月的面试之旅. 面试的公司并不多,但从体量上来看,基本算是一二三线的大厂都囊括了,其中还包括BAT,当然,最后我也是顺利的拿到 ...

  4. 基本的sql语法

    1. SELECT: 用于从数据库中选取数据 SELECT name,value FROM table_name 2.SELECT DISTINCT 语句用于返回唯一不同的值(去重) 3.WHERE ...

  5. RootersCTF2019 I ♥ Flask

    最近也是一直在做ssti方面的题目,我发现了两款比较好用的工具,一个是arjun(用来探测参数),另一个是Tplmap(用来探测ssti漏洞),我们这里以一道题目为例来演示一下 题目 我们拿到题目 分 ...

  6. MRCTF2020 你传你🐎呢

    MRCTF2020 你传你 .htaccess mime检测 1.先尝试上传了一个文件,发现.jpg后缀的可以上传成功,但是用蚁剑连接时返回空数据 2.重新先上传一个.htaccess文件,让需要被上 ...

  7. nRF24L01基于FIFO TX队列的发送性能优化

    RF24项目代码分析 头文件 https://github.com/nRF24/RF24/blob/master/RF24.h 源文件 https://github.com/nRF24/RF24/bl ...

  8. 切换不同的echarts时,出现图标缩小,报警告,Can’t get dom width or height!

    出现这样的原因是因为,在切换的时候,图表所对应的标签还没有显示出来,最好将代码放在$nextick里面执行,并且,采用使用v-if进行切换 转载:https://www.pianshen.com/ar ...

  9. gin框架中的参数验证

    结构体验证 用gin框架的数据验证,可以不用解析数据,减少if else,会简洁许多. 处理请求方法 func structValidator(context *gin.Context) { var ...

  10. PowerDotNet平台化软件架构设计与实现系列(12):HCRM人员管理平台

    技术服务于业务,良好的技术设计和实现能够大幅提升业务质量和效率. PowerDotNet已经形成了自己的开发风格,很多项目已被应用于生产环境,可行性可用性可靠性都得到了生产环境验证. 编程是非常讲究动 ...