Liu M., Tuzel O. Coupled Generative Adversarial Networks. NIPS, 2016.

用GAN和数据(从边缘分布中采样)来拟合联合分布.

主要内容

这篇文章想要解决的问题是, 在仅有俩组不同数据(即从各自边缘分布中采样的数据), 如何用GAN来近似二者的联合分布呢?

思想是很直接的, 让生成器的前几层共享权重, 判别器的前几层共享权重, 其直观理解是这些层实际上都反应的是数据的抽象的信息, 作者认为两个边缘分布的数据的经过特征提取后的高维的信息是一致的. 用数学符号表示就是

\[g_1^l(g_1^{l-1}(\cdots g_1^2(g_1^1(z)))) \quad g_2^l(g_2^{l-1}(\cdots g_2^2(g_2^1(z)))) \\
g_1^i=g_2^i,\quad i=1,\ldots, k.
\]

对于判别器是类似的.

当然通过这么共享权重, 两个生成器生成的图片必然有所联系, 可这两个生成器所拟合的联合分布就是我们想要的联合分布? 换言之, 我们想要的联合分布究竟是什么?

当然, 有了一个联合分布是挺有用的, 毕竟有了联合分布也就有了条件分布, 我们可以借此来做一些风格的迁移, 这也是文章提到的应用之一.

归根结底, 还是拟合联合分布这一操作让我困惑, 到底二者的联合分布是什么, 又或者什么样的分布是好的联合分布?

代码

原文代码

CoGAN的更多相关文章

  1. Install SharePoint 2013 on Windows Server 2012 without a domain

    Any setup of Team Foundation Server is not complete until you have at least tried t work with ShareP ...

  2. List Of All Machine Learning Sorted By Citation

    List Of All Machine Learning Sorted By Citation With > 300 citations 2013-10-10 See Citation Anal ...

  3. 提高驾驶技术:用GAN去除(爱情)动作片中的马赛克和衣服

    同步自我的知乎专栏:https://zhuanlan.zhihu.com/p/27199954 作为一名久经片场的老司机,早就想写一些探讨驾驶技术的文章.这篇就介绍利用生成式对抗网络(GAN)的两个基 ...

  4. Generative Adversarial Nets[content]

    0. Introduction 基于纳什平衡,零和游戏,最大最小策略等角度来作为GAN的引言 1. GAN GAN开山之作 图1.1 GAN的判别器和生成器的结构图及loss 2. Condition ...

  5. 常见GAN的应用

    深入浅出 GAN·原理篇文字版(完整)|干货 from:http://baijiahao.baidu.com/s?id=1568663805038898&wfr=spider&for= ...

  6. 《StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation》论文笔记

    ---恢复内容开始--- Motivation 使用单组的生成器G和判别训练图片在多个不同的图片域中进行转换 效果确实很逆天,难怪连Good Fellow都亲手给本文点赞 Introduction 论 ...

  7. Generative Adversarial Networks overview(2)

    Libo1575899134@outlook.com Libo (原创文章,转发请注明作者) 本文章会先从Gan的简单应用示例讲起,从三个方面问题以及解决思路覆盖25篇GAN论文,第二个大部分会进一步 ...

  8. StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation - 1 - 多个域间的图像翻译论文学习

    Abstract 最近在两个领域上的图像翻译研究取得了显著的成果.但是在处理多于两个领域的问题上,现存的方法在尺度和鲁棒性上还是有所欠缺,因为需要为每个图像域对单独训练不同的模型.为了解决该问题,我们 ...

  9. 深度学习-生成对抗网络GAN笔记

    生成对抗网络(GAN)由2个重要的部分构成: 生成器G(Generator):通过机器生成数据(大部分情况下是图像),目的是“骗过”判别器 判别器D(Discriminator):判断这张图像是真实的 ...

随机推荐

  1. 27.0 linux VM虚拟机IP问题

    我的虚拟机是每次换一个不同的网络,b不同的ip,使用桥接模式就无法连接,就需要重新还原默认设置才行: 第一步:点击虚拟机中的编辑-->虚拟网络编辑器 第二步:点击更改设置以管理员权限进入 第三步 ...

  2. 了解 Linkerd Service Mesh 架构

    从较高的层次上看,Linkerd 由一个控制平面(control plane) 和一个 数据平面(data plane) 组成. 控制平面是一组服务,提供对 Linkerd 整体的控制. 数据平面由在 ...

  3. 【Elasticsearch-Java】Java客户端搭建

    Elasticsearch Java高级客户端   1.  概述 Java REST Client 有两种风格: Java Low Level REST Client :用于Elasticsearch ...

  4. Linux:$i 和 ${i}区别

    例如你要把有个变量的值和其他字符串连接起来,就需要用到{},以明示{}中的是一个变量. 例如: export var1=ABC export var2=var1=${var1} echo $var2 ...

  5. myBatis批量添加实例

    <!-- 批量添加中转地数据 -->      <insert id="addBatch" parameterType="com.isoftstone. ...

  6. 解决 nginx: [error] invalid PID number "" in "/usr/local/nginx/logs/nginx.pid"

    使用/usr/local/nginx/sbin/nginx -s reload 重新读取配置文件出错 [root@localhost nginx]/usr/local/nginx/sbin/nginx ...

  7. Dubbo多版本控制

    当系统进行升级时,一般都是采用"灰度发布(又称为金丝雀发布)"过程.即在低压力时段,让部分消费者先调用新的提供者实现类,其余的仍然调用老的实现类,在新的实现类运行没有问题的情况下, ...

  8. 【Linux】【Basis】Kernel

    Linux Kernel:               CentOS启动流程:POST --> Bootloader(BIOS, MBR) --> Kernel(initrd) --> ...

  9. 1945-祖安 say hello-String

    1 #define _CRT_SECURE_NO_WARNINGS 1 2 #include<bits/stdc++.h> 3 char str[100][40]; 4 char s[10 ...

  10. 用graphviz可视化决策树

    1.安装graphviz. graphviz本身是一个绘图工具软件,下载地址在:http://www.graphviz.org/.如果你是linux,可以用apt-get或者yum的方法安装.如果是w ...