作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/


题目地址:https://leetcode.com/problems/lru-cache/

题目描述

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.

  • get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
  • put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

The cache is initialized with a positive capacity.

Follow up:
Could you do both operations in O(1) time complexity?

Example:

LRUCache cache = new LRUCache( 2 /* capacity */ );

cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // returns 1
cache.put(3, 3); // evicts key 2
cache.get(2); // returns -1 (not found)
cache.put(4, 4); // evicts key 1
cache.get(1); // returns -1 (not found)
cache.get(3); // returns 3
cache.get(4); // returns 4

题目大意

实现一个LRU,LRU全称是Least Recently Used,即最近最久未使用的意思。

LRU算法的设计原则是:如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小。也就是说,当限定的空间已存满数据时,应当把最久没有被访问到的数据淘汰。

题目中给出了LRU的负载大小,当数据被用到的时候变成了最新被使用的,当存放的数据达到了容量上线,需要把最近未被使用的弹出。

解题方法

字典+双向链表

如果看过Java的LinkedHashMap源码,大家都知道可以使用字典+双向链表来实现LRU。

其中双向链表的作用是用来维护使用的顺序的工具,把最近刚使用的放到链表最前面,一直未被使用的放到链表结尾,当达到容量的时候需要把链表结尾节点去除。

大家都知道链表的查找时间复杂度是O(N),题目要求用O(1)的时间复杂度,那么就需要高效的查找方法。我们使用字典来达到这个目的!把链表的每个节点按照{key: node}的方式放入字典里,这样就能通过key快速查到链表节点,从而对该节点进行修改。

综上,我们要对链表实现两个函数:

  1. 把一个节点从链表中删除(这就是为什么选择双向链表的原因,方便找到前后节点)
  2. 把一个节点放入链表的头部(需要一个不保存数据的root节点,其prev和next分别指向链表尾部和头部)

这个题中,链表节点需要同时保存key和value。我们通过key在字典找到该节点,返回其val;当要删除一直没被使用过的链表尾部节点时,我们也要从字典中删除它,因此需要知道其key。

python代码如下:

class ListNode:
def __init__(self, key, value):
self.key = key
self.value = value
self.prev = self
self.next = self class LRUCache: def __init__(self, capacity: int):
self.dic = dict()
self.capacity = capacity
self.size = 0
self.root = ListNode(0, 0) def get(self, key: int) -> int:
if key in self.dic:
node = self.dic[key]
self.removeFromList(node)
self.insertIntoHead(node)
return node.value
else:
return -1 def put(self, key: int, value: int) -> None:
if key in self.dic:
node = self.dic[key]
self.removeFromList(node)
self.insertIntoHead(node)
node.value = value
else:
if self.size >= self.capacity:
self.removeFromTail()
self.size -= 1
node = ListNode(key, value)
self.insertIntoHead(node)
self.dic[key] = node
self.size += 1 def removeFromList(self, node):
if node == self.root: return
prev_node = node.prev
next_node = node.next
prev_node.next = next_node
next_node.prev = prev_node
node.prev = node.next = None def insertIntoHead(self, node):
head_node = self.root.next
head_node.prev = node
node.prev = self.root
self.root.next = node
node.next = head_node def removeFromTail(self):
if self.size == 0: return
tail_node = self.root.prev
del self.dic[tail_node.key]
self.removeFromList(tail_node) # Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)

参考资料:https://yikun.github.io/2015/04/03/%E5%A6%82%E4%BD%95%E8%AE%BE%E8%AE%A1%E5%AE%9E%E7%8E%B0%E4%B8%80%E4%B8%AALRU-Cache%EF%BC%9F/

日期

2019 年 9 月 13 日 —— 今天是中秋节,祝大家中秋快乐

【LeetCode】146. LRU Cache 解题报告(Python)的更多相关文章

  1. leetcode 146. LRU Cache 、460. LFU Cache

    LRU算法是首先淘汰最长时间未被使用的页面,而LFU是先淘汰一定时间内被访问次数最少的页面,如果存在使用频度相同的多个项目,则移除最近最少使用(Least Recently Used)的项目. LFU ...

  2. Leetcode: LRU Cache 解题报告

    LRU Cache  Design and implement a data structure for Least Recently Used (LRU) cache. It should supp ...

  3. Java for LeetCode 146 LRU Cache 【HARD】

    Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...

  4. [LeetCode] 146. LRU Cache 最近最少使用页面置换缓存器

    Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...

  5. [LeetCode] 146. LRU Cache 近期最少使用缓存

    Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...

  6. leetcode@ [146] LRU Cache (TreeMap)

    https://leetcode.com/problems/lru-cache/ Design and implement a data structure for Least Recently Us ...

  7. 【LeetCode】LRU Cache 解决报告

    插话:只写了几个连续的博客,博客排名不再是实际"远在千里之外"该.我们已经进入2一万内. 再接再厉.油! Design and implement a data structure ...

  8. leetcode 146. LRU Cache ----- java

    esign and implement a data structure for Least Recently Used (LRU) cache. It should support the foll ...

  9. Leetcode#146 LRU Cache

    原题地址 以前Leetcode的测试数据比较弱,单纯用链表做也能过,现在就不行了,大数据会超时.通常大家都是用map+双向链表做的. 我曾经尝试用C++的list容器来写,后来发现map没法保存lis ...

随机推荐

  1. NextPolish对基因组进行polish

    NextPolish由未来组开发对基因组序列进行polish的工具,对三代以及二代均可进行polish. gituhp地址:https://github.com/Nextomics/NextPolis ...

  2. Linux—crontab 定期执行程序的命令

    crontab [ -u user ] { -l | -r | -e } 说明: crontab 是用来让使用者在固定时间或固定间隔执行程序之用,换句话说,也就是类似使用者的时程表. -u user ...

  3. mysql-日期时间函数大全

    DAYOFWEEK(date)  返回日期date是星期几(1=星期天,2=星期一,--7=星期六,ODBC标准)mysql> select DAYOFWEEK('1998-02-03');  ...

  4. Shell 指定行处理head、tail、sed

    目录 Shell 指定行处理 head.tail.sed head 前几行 tail sed 删除.替换.新增.选取 案例 删除行 插入行 查看某行 替换某行 部分数据的查找并替换 读写操作 Shel ...

  5. MapReduce02 序列化

    目录 MapReduce 序列化 概述 自定义序列化 常用数据序列化类型 int与IntWritable转化 Text与String 序列化读写方法 自定义bean对象实现序列化接口(Writable ...

  6. echarts饼图样式

    1.中间标题字体大小不一致(可分为一个title一个graphic) 2.labelLine与饼图分离(两个饼图,其中一个显示一个隐藏) function setmyChartJsgxzq(arr,d ...

  7. 在 windows 系统上 安装与配置 PHP + Apache

    参考:http://www.cnblogs.com/pharen/archive/2012/02/06/2340628.html 在大学时候上过一门PHP课时,因为课堂需要配置过一次PHP+Mysql ...

  8. listView 多布局

    最近在开发项目中遇到了实现类似淘宝首页的需求,使用listView可以解决,在此记录一下. 实现步骤: 重写 getViewTypeCount() – 返回你有多少个不同的布局 重写 getItemV ...

  9. Virtual Destructor

    Deleting a derived class object using a pointer to a base class that has a non-virtual destructor re ...

  10. Java 使用slf4j记录日志

    引入依赖 <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12< ...