Computer

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6378    Accepted Submission(s): 3211

Problem Description
A school bought the first computer some time ago(so this computer's id is 1). During the recent years the school bought N-1 new computers. Each new computer was connected to one of settled earlier. Managers of school are anxious about slow functioning of the net and want to know the maximum distance Si for which i-th computer needs to send signal (i.e. length of cable to the most distant computer). You need to provide this information. 


Hint: the example input is corresponding to this graph. And from the graph, you can see that the computer 4 is farthest one from 1, so S1 = 3. Computer 4 and 5 are the farthest ones from 2, so S2 = 2. Computer 5 is the farthest one from 3, so S3 = 3. we also get S4 = 4, S5 = 4.
 
Input
Input file contains multiple test cases.In each case there is natural number N (N<=10000) in the first line, followed by (N-1) lines with descriptions of computers. i-th line contains two natural numbers - number of computer, to which i-th computer is connected and length of cable used for connection. Total length of cable does not exceed 10^9. Numbers in lines of input are separated by a space.
 
Output
For each case output N lines. i-th line must contain number Si for i-th computer (1<=i<=N).
 
Sample Input
5
1 1
2 1
3 1
1 1
 
Sample Output
3
2
3
4
4
 
 
Author
scnu
 
Recommend
lcy   |   We have carefully selected several similar problems for you:  1011 3456 1520 2242 1059 
题意:给n个点,1为根节点,给你的是棵树,然后找到各个节点离树上其他节点最远的距离;
思路:树形dp;
因为这是一颗树,除了根节点外其他每个节点都又且一个父亲节点,首先dfs更新每个节点到其子节点下端的最长距离和次长距离,然后最长距离还可能从父亲节点那更新。那么再dfs从父亲节点更新子节点的最长距离,这个时候,父亲节点的最长可能是通过当前要更新的子节点,那么就用次长路去更新。复杂度O(n);
  1 #include<iostream>
2 #include<string.h>
3 #include<algorithm>
4 #include<queue>
5 #include<math.h>
6 #include<stdlib.h>
7 #include<stack>
8 #include<stdio.h>
9 #include<ctype.h>
10 #include<map>
11 #include<vector>
12 #include<map>
13 using namespace std;
14 typedef struct acc
15 {
16 int id;
17 int val;
18 } ak;
19 vector<ak>vec[100005];
20 bool vis[100005];
21 typedef struct node
22 {
23 int id;
24 int mcost;
25 int scost;
26 int mid;
27 int sid;
28 node()
29 {
30 mcost = 0;
31 scost = 0;
32 mid = -1;
33 sid = -1;
34 }
35 } ss;
36 ss dp[100005];
37 int father[1000005];
38 void dfs1(int n);
39 void dfs2(int n);
40 int main(void)
41 {
42 int n,m;
43 while(scanf("%d",&n)!=EOF)
44 {
45 memset(father,-1,sizeof(father));
46 int i,j;
47 memset(dp,0,sizeof(dp));
48 for(i = 0; i < 100005; i++)
49 vec[i].clear();
50 for(i = 2; i <= n; i++)
51 {
52 int id,val;
53 scanf("%d %d",&id,&val);
54 ak a;
55 a.val = val;
56 a.id = i;
57 father[i] = id;
58 vec[id].push_back(a);
59 }
60 dfs1(1);
61 dfs2(1);
62 for(i = 1; i <= n; i++)
63 {
64 printf("%d\n",dp[i].mcost);
65 }
66 }
67 return 0;
68 }
69 void dfs1(int n)
70 {
71 for(int i = 0; i < vec[n].size(); i++)
72 {
73 ak d = vec[n][i];
74 {
75 dfs1(d.id);
76 if(dp[d.id].mcost+d.val > dp[n].mcost)
77 {
78 dp[n].scost = dp[n].mcost;
79 dp[n].sid = dp[n].mid;
80 dp[n].mcost = dp[d.id].mcost+d.val;
81 dp[n].mid = d.id;
82 }
83 else if(dp[d.id].mcost+d.val > dp[n].scost)
84 {
85 dp[n].scost = dp[d.id].mcost+d.val;
86 dp[n].sid = d.id;
87 }
88 }
89 }
90 }
91 void dfs2(int n)
92 {
93 for(int i = 0; i < vec[n].size(); i++)
94 {
95 ak d = vec[n][i];
96 if(dp[n].mid!=d.id)
97 {
98 if(dp[n].mcost + d.val > dp[d.id].mcost)
99 {
100 dp[d.id].scost = dp[d.id].mcost;
101 dp[d.id].sid = dp[d.id].mid;
102 dp[d.id].mcost = dp[n].mcost + d.val;
103 dp[d.id].mid = n;
104 }
105 else if(dp[n].mcost + d.val > dp[d.id].scost)
106 {
107 dp[d.id].scost = dp[n].mcost + d.val;
108 dp[d.id].sid = n;
109 }
110 }
111 else
112 {
113 if(dp[n].scost + d.val > dp[d.id].mcost)
114 {
115 dp[d.id].scost = dp[d.id].mcost;
116 dp[d.id].sid = dp[d.id].mid;
117 dp[d.id].mcost = dp[n].scost + d.val;
118 dp[d.id].mid = n;
119 }
120 else if(dp[n].scost + d.val > dp[d.id].scost)
121 {
122 dp[d.id].scost = dp[n].scost + d.val;
123 dp[d.id].sid = n;
124 }
125 }
126 dfs2(d.id);
127 }
128 }
 

computer(hdu2196)的更多相关文章

  1. Computer(HDU2196+树形dp+树的直径)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2196 题目: 题意:有n台电脑,每台电脑连接其他电脑,第i行(包括第一行的n)连接u,长度为w,问你每 ...

  2. [HDU2196]Computer(DP)

    传送门 题意 给出一棵树,求离每个节点最远的点的距离 思路 对于我这种菜鸡,真是难啊. 每个点的距离它最远的点,除了在它子树中的,还有在它子树之外的,所以这几个状态都得表示出来. 我们能够很简单的求出 ...

  3. MySQL数据库的安装与配置(windows)

    MySQL是目前最为流行的开放源码的数据库,是完全网络化的跨平台的关系型数据库系统,它是由瑞典MySQLAB公司开发,目前属于Oracle公司.任何人都能从Internet下载MySQL软件,而无需支 ...

  4. 【FSFA 读书笔记】Ch 2 Computer Foundatinons(2)

    Hard Disk Technology 1. 机械硬盘内部构造 几个重要概念:Sector(扇区),Head(读写头),Track(磁道),Cylinder(柱面). 如果一个文件比较大,磁盘的写入 ...

  5. hdu 2196(Computer 树形dp)

    A school bought the first computer some time ago(so this computer's id is 1). During the recent year ...

  6. Multiple View Geometry in Computer Vision Second Edition by Richard Hartley 读书笔记(二)

    // Chapter 2介绍的是2d下的投影变换,摘录下了以下定理 Result 2.1. The point x lies on the line l if and only if xTl = 0. ...

  7. 【FSFA 读书笔记】Ch 2 Computer Foundatinons(1)

    Data Organization 1. 进制转换. 按照正常的书写顺序写一个数字(无论多少进制),其中最左边的列称为“最高有效符号”,最右边的列称为“最低有效符号”. (The right-most ...

  8. 图像分类(三)GoogLenet Inception_v3:Rethinking the Inception Architecture for Computer Vision

    Inception V3网络(注意,不是module了,而是network,包含多种Inception modules)主要是在V2基础上进行的改进,特点如下: 将滤波器尺寸(Filter Size) ...

  9. 【Network architecture】Rethinking the Inception Architecture for Computer Vision(inception-v3)论文解析

    目录 0. paper link 1. Overview 2. Four General Design Principles 3. Factorizing Convolutions with Larg ...

随机推荐

  1. printf 的 转义词 -转

    \n    换行 \r    回车键 \b   退后一格 \f    换页 \t    水平制表符 \v   垂直制表符 \a   发出鸣响 \? 插入问号 \"    插入双引号 \'   ...

  2. 数据集成工具—FlinkX

    @ 目录 FlinkX的安装与简单使用 FlinkX的安装 FlinkX的简单使用 读取mysql中student表中数据 FlinkX本地运行 MySQLToHDFS MySQLToHive MyS ...

  3. 并发 并行 进程 线程 协程 异步I/O python async

    一些草率不精确的观点: 并发: 一起发生,occurence: sth that happens. 并行: 同时处理. parallel lines: 平行线.thread.join()之前是啥?落霞 ...

  4. C++构造函数和析构函数初步认识

    构造函数 1.构造函数与类名相同,是特殊的公有成员函数.2.构造函数无函数返回类型说明,实际上构造函数是有返回值的,其返回值类型即为构造函数所构建到的对象.3.当新对象被建立时,构造函数便被自动调用, ...

  5. Oracle参数文件—pfile与spfile

    oracle的参数文件:pfile和spfile 1.pfile和spfile       Oracle中的参数文件是一个包含一系列参数以及参数对应值的操作系统文件.它们是在数据库实例启动时候加载的, ...

  6. Linux磁盘分区(三)之查看磁盘分区常用命令

    Linux磁盘分区(三)之查看磁盘分区常用命令转自https://blog.csdn.net/x356982611/article/details/77893264 1.df     df -T 总的 ...

  7. Oracle数据库导入与导出方法简述

    说明: 1.数据库数据导入导出方法有多种,可以通过exp/imp命令导入导出,也可以用第三方工具导出,如:PLSQL 2.如果熟悉命令,建议用exp/imp命令导入导出,避免第三方工具版本差异引起的问 ...

  8. spring注解-bean生命周期

    https://www.jianshu.com/p/70b935f2b3fe bean的生命周期 bean创建---初始化----销毁的过程 容器管理bean的生命周期 对象创建:容器启动后调用bea ...

  9. zabbix之源码安装

    #:官网地址 https://www.zabbix.com/documentation/4.0/zh/manual/installation/install #:解压并创建用户 root@ubuntu ...

  10. SpringBoot(1):初始SpringBoot

    一. SpringBoot 简介 1. SpringBoot介绍 Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化Spring应用的初始搭建以及开发过程.该框架使用了特 ...