期望入门题。但是我不会做。

考虑设\(E_{x\to{x+1}}\)为\(x\)到\(x+1\)点的期望步数。

则\(ans = \sum_{i = 0}^{n} E_{x\to{x+1}}\)

知\(E_{y\to{x+1}} = \sum_{i = y}^{x}E_{i\to{i + 1}}\)

\(E_{x\to{x+1}} = \frac{1}{son + 1} + \frac{1}{son + 1}\sum_{(x,y)\ in\ {Son}}(E_{y\to{x+1}} + 1)\)

设\(E_{x\to{x+1}} = f_x\),\(sum_x = \sum_i^xf_i\)

\(f_x = (son + 1) + \sum_{(x,y)\ in\ Son}sum_{x-1} - sum_{y - 1}\)

// Problem: P6835 [Cnoi2020]线形生物
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P6835
// Memory Limit: 128 MB
// Time Limit: 1000 ms
//
// Powered by CP Editor (https://cpeditor.org) #include<iostream>
#include<cstdio>
#define ll long long
#define mod 998244353
#define N 1000005 int head[N],cnt;
struct P{
int to,next;
}e[N << 1]; inline void add(int x,int y){
e[++cnt].to = y;
e[cnt].next = head[x];
head[x] = cnt;
} ll n,m,k,out[N];
ll f[N],sum[N]; int main(){
scanf("%lld%lld%lld",&k,&n,&m);
for(int i = 1;i <= m;++i){
ll l,r;
scanf("%lld%lld",&l,&r);
add(l,r);
out[l]++;
}
for(int i = 1;i <= n;++i){
f[i] = (out[i] + 1);
for(int j = head[i];j;j = e[j].next){
int v = e[j].to;
f[i] = (f[i] + (sum[i - 1] - sum[v - 1]) % mod + mod) % mod;
}
sum[i] = (sum[i - 1] + f[i]) % mod;
}
std::cout<<sum[n] % mod<<std::endl;
return 0;
}

[Cnoi2020]线性生物的更多相关文章

  1. 线性整流函数(ReLU)

    线性整流函数(Rectified Linear Unit, ReLU),又称修正线性单元, 是一种人工神经网络中常用的激活函数(activation function),通常指代以斜坡函数及其变种为代 ...

  2. MCP|XHK|High-density peptide arrays help to identify linear immunogenic B cell epitopes in individuals naturally exposed to malaria infection(高密度肽段阵列有助于在自然暴露于疟疾感染的个体中识别线性免疫原性B细胞表位)

    文献名:High-density peptide arrays help to identify linear immunogenic B cell epitopes in individuals n ...

  3. ReLu(修正线性单元)、sigmoid和tahh的比较

    不多说,直接上干货! 最近,在看论文,提及到这个修正线性单元(Rectified linear unit,ReLU). Deep Sparse Rectifier Neural Networks Re ...

  4. Mol Cell | 张令强/贺福初/魏文毅/刘翠华揭示线性泛素化调控血管生成新机制

    景杰学术 | 报道 泛素化修饰作为主要的蛋白质翻译后修饰之一,与细胞周期.应激反应.信号传导和DNA损伤修复等几乎所有的生命活动密切相关[1].泛素分子通常含有7个赖氨酸残基,通过这些残基可以和其他泛 ...

  5. 线性判别分析LDA原理总结

    在主成分分析(PCA)原理总结中,我们对降维算法PCA做了总结.这里我们就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 以下简称LDA)做一个总结. ...

  6. 2. SVM线性分类器

    在一个线性分类器中,可以看到SVM形成的思路,并接触很多SVM的核心概念.用一个二维空间里仅有两类样本的分类问题来举个小例子.如图所示 和是要区分的两个类别,在二维平面中它们的样本如上图所示.中间的直 ...

  7. linux2.6 内存管理——逻辑地址转换为线性地址(逻辑地址、线性地址、物理地址、虚拟地址)

    Linux系统中的物理存储空间和虚拟存储空间的地址范围分别都是从0x00000000到0xFFFFFFFF,共4GB,但物理存储空间与虚拟存储空间布局完全不同.Linux运行在虚拟存储空间,并负责把系 ...

  8. bzoj2693--莫比乌斯反演+积性函数线性筛

    推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和 ...

  9. BZOJ 2693: jzptab [莫比乌斯反演 线性筛]

    2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1194  Solved: 455[Submit][Status][Discu ...

随机推荐

  1. silky微服务快速开始

    项目介绍 Silky框架旨在帮助开发者在.net平台下,通过简单代码和配置快速构建一个微服务开发框架. Silky 通过 .net core的主机来托管微服务应用.通过 Asp.Net Core 提供 ...

  2. 【Spring】Spring重要类层次图

  3. 短短 29 天,应对高峰 100W+ 访问,看浙大如何交出满分答卷

    疫情期间"停课不停教,停课不停学",线上开课第一天,浙江大学网上开课平台访问量即突破100 万次,访客数3万余人,最高峰达 1.1万人同时在线,发起课程直播2000余场,然而系统却 ...

  4. Java:Set接口小记

    Java:Set接口小记 对 Java 中的 Set接口 与 其实现类,做一个微不足道的小小小小记 概述 public interface Set<E> extends Collectio ...

  5. 【二食堂】Alpha - 项目展示

    项目展示 1. 团队介绍 二食堂很难排队 姓名 介绍 职务 刘享 热爱游戏,尤其是RPG和metrovinia类的游戏. 会C/C++, python, java. 后端 左正 一个普通的大学生,Py ...

  6. 晶振在电路设计时关于负载电容CL大小取值特别需要注意什么?

    在无源晶体的设计中,经常遇到负载电容CL的大小取值.晶振设计与精度的提高.KHz无源晶振的停止.音叉晶体谐振器的精度漂移以及精度和无源晶振在高温下的精度是否等于低温的精度烦忧的问题等. 无源晶体振荡器 ...

  7. linux Segmentation faults 段错误详解

    什么是段错误 下面是来自 Answers.com 的定义: A segmentation fault (often shortened to segfault) is a particular err ...

  8. VirtualBox问题解决合集 - [drm:vmw_host_log [vmwgfx]] *ERROR* Failed to send host log message

    转载:https://blog.csdn.net/mychangee/article/details/104954262 问题描述:[drm:vmw_host_log [vmwgfx]] ERROR  ...

  9. 前端面试手写代码——模拟实现new运算符

    目录 1 new 运算符简介 2 new 究竟干了什么事 3 模拟实现 new 运算符 4 补充 预备知识: 了解原型和原型链 了解this绑定 1 new 运算符简介 MDN文档:new 运算符创建 ...

  10. openstack 后期维护(四)--- 删除僵尸卷

    前言: 在长时间使用openstack之后,删除虚机后,经常会有因这样那样的问题,导致卷处于僵尸状态,无法删除! 状态一: 虚机已近删除,然而卷却挂在到了 None上无法删除 解决办法: 1.# ci ...