AtCoder ABC 215 简要题解
A - B
模拟
C
可以直接爆搜,也可以写逐位确定的多项式复杂度算法,使用多重组合式求随意乱排的方案数。
D
首先对 \(A\) 所有数暴力分解质因数,然后把遇到过的质因数打上标记。
接下来再对 \(1 \sim m\) 暴力枚举然后分解质因数 \(\rm check\) 即可,复杂度 \(\mathcal{O}((n + m) \sqrt{W})\)。
E
看错题耽误了半小时。。。直接状压:令 \(f_{i, j, S}\) 表示当前考虑到第 \(i\) 位上一个选出来的比赛为 \(j\),当前已经选出的比赛二进制压位后为 \(S\) 的方案数。
转移显然,复杂度 \(\mathcal{O}(10n2 ^ {10})\)。
F
二分答案,问题转变为是否存在一对点对 \(x, y\) 坐标之差均 \(\ge mid\)。
首先将所有点按照 \(x\) 坐标排序,考虑 \((i, j)(i < j)\) 这个点对是否合法在 \(j\) 处统计。
那么对于 \(j\) 可行的 \(i\) 是一段前缀,我们维护这段前缀 \(y\) 的最大最小值即可判断。
注意到随 \(j\) 递增可行的前缀不减,于是可以双指针扫过来,复杂度 \(\mathcal{O}(n (\log W + \log n))\)。
G
根据期望的线性性,我们考虑每种颜色对答案的贡献。
可以发现贡献只与颜色出现次数有关,注意到本质不同的出现次数只有 \(\sqrt{n}\) 个,于是我们把出现次数相同的颜色一起计算贡献,复杂度 \(\mathcal{O}(n \sqrt{n})\)。
貌似题解还有 \(\mathcal{O}(n \mathrm{Poly}(\log n))\) 的做法,不会 \(\rm PGF\) 先鸽。。。
H
首先考虑什么情况是合法的。
容易扩展 \(\rm Hall\) 定律得到局面合法当且仅当:\(\forall S \in V_b, \sum\limits_{i \in S} b_i \le |\bigcup\limits_{i \in S, c_{j, i} = 1} a_j|\)(写的不是很严谨,右侧是所对应集合 \(a\) 的和)。
由于 \(m\) 很大 \(n\) 很小,因此我们考虑枚举右边的集合 \(T\),那么就要求出左边有那些集合 \(S\) 出边构成的并集恰为 \(T\),设为 \(P_T\),那么不难得到第一问答案为:
\]
不难观察得:取到最大值的集合 \(S \in P_T\) 一定是 \(P_T\) 内所有集合的并,因此就不需要枚举所有集合 \(S \in P_T\) 了,只需要求出所有 \(P_T\) 内集合的并 \(P_T'\) 即可,那么可将答案改写为:
\]
同时继续观察可以发现:我们可以放宽条件使得答案依然不变(令 \(s_j\) 为 \(j\) 这个公司可以接受的菜品压位构成的二进制数):
\]
于是我们只需 \(\forall S, \mathrm{count} : f_S = \sum\limits_{i = 1} ^ m [s_i \subseteq S] b_i\) 即可计算得出第一问的答案。
那么我们直接令 \(g_{S} = \sum\limits_{i = 1} ^ m [s_i = S] b_i\),这个可以 \(\mathcal{O}(m)\) 简单得到,然后做一边子集和(高维前缀和)即可,复杂度 \(\mathcal{O}(n2 ^ n)\)。
接下来考虑第二问,根据第一问可以得知,问题显然可以转化为:
- 有 \(n\) 种物品,第 \(i\) 种物品有 \(a_i\) 个,所有物品之间(包括同种物品)有标号,接下来需要从中取出 \(m\) 个元素,接下来给出 \(k\) 个集合,要求选取出的所有元素至少完整地被一个集合包含,求方案数。
考虑容斥,计算得到不合法的方案数。
首先不难得到一个朴素的 \(\rm dp\) 方法,令 \(f_{i, j}\) 表示考虑完前 \(i\) 个集合,当前集合的交集为 \(j\) 的容斥系数之和。
转移显然,复杂度 \(\mathcal{O}(4 ^ n)\),不能接受。
可以发现,问题在于如何快速地得到选出若干个集合并集恰好为 \(S\) 的容斥系数之和。
对此,我们考虑使用 另一个容斥来求出此容斥系数之和。
具体地,我们令 \(g_S\) 为钦定选出若干个集合并集至少为 \(S\) 的方案,那么有(令给出的集合为 \(T_{1, 2, \cdots k}\)):
\]
为了求 \(g\),我们考虑直接计算得到:
\]
然后得到 \(g\) 的方法显然,对于此我们做一边超集和(高维后缀和),复杂度 \(\mathcal{O}(n2 ^ n)\)。
那么就满足二项式反演的集合形式,令 \(f\) 为恰好的方案,根据二项式反演易得:
\]
容易发现这是一个异或卷积的形式,直接做 \(\rm FWT\) 即可,复杂度 \(\mathcal{O}(n2 ^ n)\)。
当然你也可以不写 \(\rm FWT\),我们将 \((-1) ^ {|S|}\) 提出最后乘上去,那么后者也是一个超集和,可以直接计算。
那么最终第二问的答案为:
\]
总体复杂度 \(\mathcal{O}(nm + n2 ^ n)\)。
AtCoder ABC 215 简要题解的更多相关文章
- AtCoder ExaWizards 2019 简要题解
AtCoder ExaWizards 2019 简要题解 Tags:题解 link:https://atcoder.jp/contests/exawizards2019 很水的一场ARC啊,随随便便就 ...
- AtCoder ABC 242 题解
AtCoder ABC 242 题解 A T-shirt 排名前 \(A\) 可得 T-shirt 排名 \([A+1,B]\) 中随机选 \(C\) 个得 T-shirt 给出排名 \(X\) ,求 ...
- AtCoder Beginner Contest 184 题解
AtCoder Beginner Contest 184 题解 目录 AtCoder Beginner Contest 184 题解 A - Determinant B - Quizzes C - S ...
- Noip 2014酱油记+简要题解
好吧,day2T1把d默认为1也是醉了,现在只能期待数据弱然后怒卡一等线吧QAQ Day0 第一次下午出发啊真是不错,才2小时左右就到了233,在车上把sao和fate补掉就到了= = 然后到宾馆之后 ...
- Tsinghua 2018 DSA PA2简要题解
反正没时间写,先把简要题解(嘴巴A题)都给他写了记录一下. upd:任务倒是完成了,我也自闭了. CST2018 2-1 Meteorites: 乘法版的石子合并,堆 + 高精度. 写起来有点烦貌似. ...
- Codeforces 863 简要题解
文章目录 A题 B题 C题 D题 E题 F题 G题 传送门 简要题解?因为最后一题太毒不想写了所以其实是部分题解... A题 传送门 题意简述:给你一个数,问你能不能通过加前导000使其成为一个回文数 ...
- HNOI2018简要题解
HNOI2018简要题解 D1T1 寻宝游戏 题意 某大学每年都会有一次 Mystery Hunt 的活动,玩家需要根据设置的线索解谜,找到宝藏的位置,前一年获胜的队伍可以获得这一年出题的机会. 作为 ...
- JXOI2018简要题解
JXOI2018简要题解 T1 排序问题 题意 九条可怜是一个热爱思考的女孩子. 九条可怜最近正在研究各种排序的性质,她发现了一种很有趣的排序方法: Gobo sort ! Gobo sort 的算法 ...
- BJOI2018简要题解
BJOI2018简要题解 D1T1 二进制 题意 pupil 发现对于一个十进制数,无论怎么将其的数字重新排列,均不影响其是不是 \(3\) 的倍数.他想研究对于二进制,是否也有类似的性质. 于是他生 ...
随机推荐
- Spring Boot 2 中的默认日志管理与 Logback 配置详解
Spring Boot在所有内部日志中使用Commons Logging,但是对底层日志的实现是开放的.在Spring Boot生态中,为Java Util Logging .Log4J2 和Logb ...
- Linux_Cornd任务调度
Crond任务调度 进行定时任务的设置 概述 任务调度:是指系统在某个时间执行特定的命令或程序 作用:避免重复工作 基本语法 crontab [选项] 选项 功能 -e 编辑crontab定时任务 - ...
- Web前端浏览器默认样式重置(CSS Tools: Reset CSS)
/* http://meyerweb.com/eric/tools/css/reset/ v2.0 | 20110126 License: none (public domain) */ html, ...
- MySQL高级查询与编程笔记 • 【第4章 MySQL编程】
全部章节 >>>> 本章目录 4.1 用户自定义变量 4.1.1 用户会话变量 4.1.2 用户会话变量赋值 4.1.3 重置命令结束标记 4.1.4 实践练习 4.2 存 ...
- 使用jQuery 中的显示与隐藏动画效果实现折叠下拉菜单的收缩和展开,在页面的列表中有若干项,列表的每项中有一个二级列表,二级列表默认为隐藏状态。点击列表的项,切换二级列表的显示或隐藏状态
查看本章节 查看作业目录 需求说明: 使用jQuery 中的显示与隐藏动画效果实现折叠下拉菜单的收缩和展开,在页面的列表中有若干项,列表的每项中有一个二级列表,二级列表默认为隐藏状态.点击列表的项,切 ...
- Flask_Flask-Migrate数据迁移扩展(十二)
在开发过程中,需要修改数据库模型,而且还要在修改之后更新数据库.最直接的方式就是删除旧表,但这样会丢失数据.更好的解决办法是使用数据库迁移框架,它可以追踪数据库模式的变化,然后把变动应用到数据库中. ...
- pymysql防止SQL注入的方法
import pymysql class Db(object): def __init__(self): self.conn = pymysql.connect(host="192.168. ...
- git 不小心把某个文件给 add 了 的解决方法
1.我不小心把这两个文件给add 进来本地仓库 2.解决 进入指令框 ,执行 git rm --cached 文件名 如下图 注意,必须指定文件否则会删除所有
- 在CentOS 7.6 以 kubeadm 安装 Kubernetes 1.15 最佳实践
前言 Kubernetes作为容器编排工具,简化容器管理,提升工作效率而颇受青睐.很多新手部署Kubernetes由于"scientifically上网"问题举步维艰,本文以实战经 ...
- Linux下Tomcat启动、停止、重新启动
在Linux系统下,重启Tomcat使用命令操作的! 1.首先,进入Tomcat下的bin目录,${CATALINA_HOME}代表tomcat的安装路径 进入Tomcat安装目录: cd ${CAT ...