1101 Quick Sort (25 分)

There is a classical process named partition in the famous quick sort algorithm. In this process we typically choose one element as the pivot. Then the elements less than the pivot are moved to its left and those larger than the pivot to its right. Given N distinct positive integers after a run of partition, could you tell how many elements could be the selected pivot for this partition?

For example, given N=5 and the numbers 1, 3, 2, 4, and 5. We have:

  • 1 could be the pivot since there is no element to its left and all the elements to its right are larger than it;
  • 3 must not be the pivot since although all the elements to its left are smaller, the number 2 to its right is less than it as well;
  • 2 must not be the pivot since although all the elements to its right are larger, the number 3 to its left is larger than it as well;
  • and for the similar reason, 4 and 5 could also be the pivot.

Hence in total there are 3 pivot candidates.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (≤105). Then the next line contains N distinct positive integers no larger than 109. The numbers in a line are separated by spaces.

Output Specification:

For each test case, output in the first line the number of pivot candidates. Then in the next line print these candidates in increasing order. There must be exactly 1 space between two adjacent numbers, and no extra space at the end of each line.

Sample Input:

5
1 3 2 4 5

Sample Output:

3
1 4 5

分析:对于每一个元素num[i],记录下它左边最大和右边最小的数,然后遍历一遍找出候选主元

#include<iostream>
#include<cstdio>
#include<vector>
#include<string>
#include<unordered_map>
#include<set>
#include<queue>
#include<algorithm>
#include<cmath>
using namespace std;
int main(){
#ifdef ONLINE_JUDGE
#else
freopen("input.txt", "r", stdin);
#endif // ONLINE_JUDGE
int n;
scanf("%d", &n);
int num[n], lmax[n], rmin[n];
lmax[0] = 0;
for(int i = 0; i < n; ++i){
scanf("%d", &num[i]);
if(i > 0)lmax[i] = max(lmax[i - 1], num[i - 1]);
}
rmin[n - 1] = num[n - 1] + 1;
for(int i = n - 2; i >= 0; --i){
rmin[i] = min(rmin[i + 1], num[i + 1]);
}
vector<int>ans;
for(int i = 0; i < n; ++i){
if(num[i] > lmax[i] && num[i] < rmin[i])ans.push_back(num[i]);
}
sort(ans.begin(), ans.end());
printf("%d\n", ans.size());
for(int i = 0; i < ans.size(); ++i){
if(i > 0)printf(" ");
printf("%d", ans[i]);
}
printf("\n");
return 0;
}

【刷题-PAT】A1101 Quick Sort (25 分)的更多相关文章

  1. A1101 Quick Sort (25 分)

    一.技术总结 这里的一个关键就是理解调换位置排序是时,如果是元主,那么它要确保的条件就只有两个一个是,自己的位置不变,还有就是前面的元素不能有比自己大的. 二.参考代码 #include<ios ...

  2. PAT甲题题解-1101. Quick Sort (25)-大水题

    快速排序有一个特点,就是在排序过程中,我们会从序列找一个pivot,它前面的都小于它,它后面的都大于它.题目给你n个数的序列,让你找出适合这个序列的pivot有多少个并且输出来. 大水题,正循环和倒着 ...

  3. 【PAT甲级】1101 Quick Sort (25 分)

    题意: 输入一个正整数N(<=1e5),接着输入一行N个各不相同的正整数.输出可以作为快速排序枢纽点的个数并升序输出这些点的值. trick: 测试点2格式错误原因:当答案为0时,需要换行两次

  4. PTA PAT排名汇总(25 分)

    PAT排名汇总(25 分) 计算机程序设计能力考试(Programming Ability Test,简称PAT)旨在通过统一组织的在线考试及自动评测方法客观地评判考生的算法设计与程序设计实现能力,科 ...

  5. pat1101. Quick Sort (25)

    1101. Quick Sort (25) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CAO, Peng There is a ...

  6. PTA 09-排序3 Insertion or Heap Sort (25分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/676 5-14 Insertion or Heap Sort   (25分) Accor ...

  7. 【刷题-PAT】A1114 Family Property (25 分)

    1114 Family Property (25 分) This time, you are supposed to help us collect the data for family-owned ...

  8. 【刷题-PAT】A1126 Eulerian Path (25 分)

    1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...

  9. PAT 甲级 1029 Median (25 分)(思维题,找两个队列的中位数,没想到)*

    1029 Median (25 分)   Given an increasing sequence S of N integers, the median is the number at the m ...

随机推荐

  1. CF1106A Lunar New Year and Cross Counting 题解

    Content 试求出在一个 \(n\times n\) 的地图 \(M\) 中,满足 \(1\leqslant i,j\leqslant n\) 且 \(M_{i,j}=M_{i+1,j+1}=M_ ...

  2. Android JNI 启动线程,并设置线程名称

    p.p1 { margin: 0; font: 12px Menlo; color: rgba(100, 56, 32, 1); background-color: rgba(255, 255, 25 ...

  3. java源码——计算不同图形的周长和面积

    计算任意三角形,正方形,正五边形,圆形的周长和面积. 利用类的继承实现. 将计算结果进行输出. 不多说,贴码. Contants.java 常量存储类 <pre name="code& ...

  4. 【LeetCode】911. Online Election 解题报告(Python)

    [LeetCode]911. Online Election 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ ...

  5. spoj-ORDERS - Ordering the Soldiers

    ORDERS - Ordering the Soldiers As you are probably well aware, in Byteland it is always the military ...

  6. VR AR MR的未来

    VR:VR(Virtual Reality,即虚拟现实,简称VR),是由美国VPL公司创建人拉尼尔(Jaron Lanier)在20世纪80年代初提出的.其具体内涵是:综合利用计算机图形系统和各种现实 ...

  7. MyBatis 流式查询

    流式查询指的是查询成功后不是返回一个集合而是返回一个迭代器,应用每次从迭代器取一条查询结果.流式查询的好处是能够降低内存使用. 流式查询的过程当中,数据库连接是保持打开状态的,因此要注意的是:执行一个 ...

  8. C9软件工程非一线城市面试经验

    本人C9软件工程毕业,由于家境一般,不想去一线城市面对天价房价,所以面的都不是互联网大厂. 人生第一面: 2021.11.29 五某汽车 软件工程岗面试 提前3天发了短信,然后拉了一个面试微信群 1. ...

  9. Python Revisited Day 09 (调试、测试与Profiling)

    目录 9.1 调试 9.1.1 处理语法错误 9.1.2 处理运行时错误 9.1.3 科学的调试 9.2 单元测试 9.3 Profiling 9.1 调试 定期地进行备份是程序设计中地一个关键环节- ...

  10. 人脸识别中的重要环节-对齐之3D变换-Java版(文末附开源地址)

    一.人脸对齐基本概念 人脸对齐通过人脸关键点检测得到人脸的关键点坐标,然后根据人脸的关键点坐标调整人脸的角度,使人脸对齐,由于输入图像的尺寸是大小不一的,人脸区域大小也不相同,角度不一样,所以要通过坐 ...