容易发现答案即$\sum_{S}\sum_{u=1}^{W}[u\le val(S)]=\sum_{u=1}^{W}\sum_{S}[u\le val(S)]$,那么可以枚举权值$u$,并将点权$val<u$的点标为0,$u\le val$的点标为1,相当于统计大于等于k个1的连通子图个数
考虑dp,用$f[u][i][j]$表示权值为u,在以i为根的子树中,选出点中恰好有j个1的方案数,转移方程为$f[u][i][j]=\sum_{a[i]+\sum_{son}b[son]=j}\prod_{son}(f[u][son][b[son]]+[b[son]==0])$,复杂度为$o(w\cdot n^{3})$
令$F[u][i](x)=\sum_{j=0}^{sz[i]}f[u][i][j]\cdot x^{j}$,那么$F[u][i](x)=x^{a[i]}\prod_{son}(F[u][son](x)+1)$,对其插值,最后再用拉格朗日插值法求出系数(先把所有多项式加起来再求),复杂度为$o(w\cdot n^{2})$
调换枚举顺序,对于一个插值,将每一个点i以u为下标建立一棵线段树,由于如果i子树内不存在某一个权值w,那么显然有$F[w][i]=F[w-1][i]$,因此可以线段树合并来实现dp过程,总复杂度$o(n^{2}log W)$
由于线段树合并时还需要实现累加子树内的多项式,这可以通过记录4个标记$(a,b,c,d)$来实现,其中a和b表示这个点的答案,c和d表示累加起来的答案,最后标记都下传后的d标记即为这个位置上所有数的和
  1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 2005
4 #define mod 64123
5 #define mid (l+r>>1)
6 struct ji{
7 int nex,to;
8 }edge[N<<1];
9 struct tag{
10 int a,b,c,d;
11 }f[N*15];
12 int V,E,n,m,w,v,x,y,ans,head[N],r[N],a[N],b[N],sum[N],ch[N*15][2];
13 void add(int x,int y){
14 edge[E].nex=head[x];
15 edge[E].to=y;
16 head[x]=E++;
17 }
18 int ksm(int n,int m){
19 if (!m)return 1;
20 int s=ksm(n,m>>1);
21 s=1LL*s*s%mod;
22 if (m&1)s=1LL*s*n%mod;
23 return s;
24 }
25 int New(){
26 f[++V]=tag{1,0,0,0};
27 ch[V][0]=ch[V][1]=0;
28 return V;
29 }
30 void upd(int &k,tag x){
31 if (!k)k=New();
32 f[k].c=(1LL*f[k].a*x.c+f[k].c)%mod;
33 f[k].d=(1LL*f[k].b*x.c+f[k].d+x.d)%mod;
34 f[k].a=1LL*f[k].a*x.a%mod;
35 f[k].b=(1LL*f[k].b*x.a+x.b)%mod;
36 }
37 void down(int k){
38 upd(ch[k][0],f[k]);
39 upd(ch[k][1],f[k]);
40 f[k]=tag{1,0,0,0};
41 }
42 void update(int &k,int l,int r,int x,int y,tag z){
43 if ((l>y)||(x>r))return;
44 if (!k)k=New();
45 if ((x<=l)&&(r<=y)){
46 upd(k,z);
47 return;
48 }
49 down(k);
50 update(ch[k][0],l,mid,x,y,z);
51 update(ch[k][1],mid+1,r,x,y,z);
52 }
53 int merge(int k1,int k2){
54 if ((!k1)||(!k2))return k1+k2;
55 if ((!ch[k1][0])&&(!ch[k1][1]))swap(k1,k2);
56 if ((!ch[k2][0])&&(!ch[k2][1])){
57 f[k1].a=1LL*f[k1].a*f[k2].b%mod;
58 f[k1].b=1LL*f[k1].b*f[k2].b%mod;
59 f[k1].d=(f[k1].d+f[k2].d)%mod;
60 return k1;
61 }
62 down(k1);
63 down(k2);
64 ch[k1][0]=merge(ch[k1][0],ch[k2][0]);
65 ch[k1][1]=merge(ch[k1][1],ch[k2][1]);
66 return k1;
67 }
68 void dfs(int k,int fa){
69 upd(r[k],tag{0,1,0,0});
70 for(int i=head[k];i!=-1;i=edge[i].nex)
71 if (edge[i].to!=fa){
72 dfs(edge[i].to,k);
73 r[k]=merge(r[k],r[edge[i].to]);
74 }
75 update(r[k],1,w,1,a[k],tag{v,0,0,0});
76 upd(r[k],tag{1,0,1,0});
77 upd(r[k],tag{1,1,0,0});
78 }
79 void tot(int k,int l,int r){
80 if (l==r){
81 sum[v]=(sum[v]+f[k].d)%mod;
82 return;
83 }
84 down(k);
85 tot(ch[k][0],l,mid);
86 tot(ch[k][1],mid+1,r);
87 }
88 int main(){
89 scanf("%d%d%d",&n,&m,&w);
90 memset(head,-1,sizeof(head));
91 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
92 for(int i=1;i<n;i++){
93 scanf("%d%d",&x,&y);
94 add(x,y);
95 add(y,x);
96 }
97 for(v=0;v<=n;v++){
98 V=0;
99 memset(r,0,sizeof(r));
100 dfs(1,0);
101 tot(r[1],1,w);
102 }
103 memset(a,0,sizeof(a));
104 a[0]=1;
105 for(int i=0;i<=n;i++)
106 for(int j=i+1;j>=0;j--)a[j]=(a[j-1]-i*a[j]%mod+mod)%mod;
107 for(int i=0;i<=n;i++){
108 x=1;
109 for(int j=0;j<=n;j++)
110 if (i!=j)x=1LL*x*(i-j+mod)%mod;
111 x=1LL*ksm(x,mod-2)*sum[i]%mod;
112 memcpy(b,a,sizeof(b));
113 for(int j=n+1;j;j--){
114 b[j-1]=(b[j-1]+i*b[j])%mod;
115 if (m<j)ans=(ans+1LL*b[j]*x)%mod;
116 }
117 }
118 printf("%d",ans);
119 }

[loj2473]秘密袭击的更多相关文章

  1. [九省联考2018]秘密袭击coat

    [九省联考2018]秘密袭击coat 研究半天题解啊... 全网几乎唯一的官方做法的题解:链接 别的都是暴力.... 要是n=3333暴力就完了. 一.问题转化 每个联通块第k大的数,直观统计的话,会 ...

  2. 【BZOJ5250】[九省联考2018]秘密袭击(动态规划)

    [BZOJ5250][九省联考2018]秘密袭击(动态规划) 题面 BZOJ 洛谷 给定一棵树,求其所有联通块的权值第\(k\)大的和. 题解 整个\(O(nk(n-k))\)的暴力剪剪枝就给过了.. ...

  3. LOJ #2473. 「九省联考 2018」秘密袭击

    #2473. 「九省联考 2018」秘密袭击 链接 分析: 首先枚举一个权值W,计算这个多少个连通块中,第k大的数是这个权值. $f[i][j]$表示到第i个节点,有j个大于W数的连通块的个数.然后背 ...

  4. P4365 [九省联考2018]秘密袭击coat

    $ \color{#0066ff}{ 题目描述 }$ Access Globe 最近正在玩一款战略游戏.在游戏中,他操控的角色是一名C 国士 兵.他的任务就是服从指挥官的指令参加战斗,并在战斗中取胜. ...

  5. [BZOJ5250][九省联考2018]秘密袭击(DP)

    5250: [2018多省省队联测]秘密袭击 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3  Solved: 0[Submit][Status][D ...

  6. [luogu]P4365[九省联考]秘密袭击coat(非官方正解)

    题目背景 警告:滥用本题评测者将被封号 We could have had it all. . . . . . 我们本该,拥有一切 Counting on a tree. . . . . . 何至于此 ...

  7. 并不对劲的复健训练-bzoj5250:loj2473:p4365:[九省联考2018]秘密袭击

    题目大意 有一棵\(n\)(\(n\leq 1666\))个点的树,有点权\(d_i\),点权最大值为\(w\)(\(w\leq 1666\)).给出\(k\)(\(k\leq n\)),定义一个选择 ...

  8. bzoj5250 [2018多省省队联测]秘密袭击

    博主蒟蒻,目前还不会动态dp,所以下面说的是一个并不优秀的暴力,我会补的! 我们考虑按权值从大到小依次点亮每个点,相同权值可以同时点亮,每次点亮后,我们进行一次树形背包. 处理出$f[i][j]$表示 ...

  9. luogu4365 秘密袭击 (生成函数+线段树合并+拉格朗日插值)

    求所有可能联通块的第k大值的和,考虑枚举这个值: $ans=\sum\limits_{i=1}^{W}{i\sum\limits_{S}{[i是第K大]}}$ 设cnt[i]为连通块中值>=i的 ...

随机推荐

  1. canvas 实现简单的画板功能 1.0

    canvas 实现自由画线,变换颜色.画笔大小,撤销上一步等简单功能 <!DOCTYPE html> <html lang="en"> <head&g ...

  2. python中冒泡排序代码实现

    1.冒泡排序代码如下图: #冒泡算法l=[12,4,56,10,6,2]for i in range(0,6): for j in range(i+1,6): if l[i]>l[j]: a=l ...

  3. dubbo服务架构介绍

    Provider: 暴露服务的服务提供方. Consumer: 调用远程服务的服务消费方. Registry: 服务注册与发现的注册中心. Monitor: 统计服务的调用次数和调用时间的监控中心. ...

  4. Java(7)流程控制语句中的for、while、do while循环

    作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15201543.html 博客主页:https://www.cnblogs.com/testero ...

  5. wget命令8种实用用法

    大家好,我是良许. wget 是一个可以从网络上下载文件的免费实用程序,它的工作原理是从 Internet 上获取数据,并将其保存到本地文件中或显示在你的终端上. 这实际上也是大家所使用的浏览器所做的 ...

  6. 小白自制Linux开发板 七. USB驱动配置

    本文章基于https://whycan.com/t_3087.htmlhttps://whycan.com/t_6021.html整理 F1c100s芯片支持USB的OTG模式,也就是可以通过更改Us ...

  7. JavaScript05

    显示和隐藏 元素的显示和隐藏 元素display属性可控制元素的显示和隐藏,先获取元素对象,再通过点语法调用style对象中的display属性 语法格式: 元素.style.display='non ...

  8. 小白自制Linux开发板 八. Linux音频驱动配置

    不知不觉小白自制开发板系列已经到第八篇了,本篇要配置的是音频驱动,也算是硬件部分的最后一片了,积攒的文章也差不多全放完了,后续更新可能会放缓,还请见谅. 对于F1C200s是自带了多媒体处理功能的,所 ...

  9. MySQL复习(二)MySQL基本数据类型

    MySQL基本数据类型 常用的字段类型大致可以分为数值类型.字符串类型.日期时间类型三大类 1. 数值类型 数值类型可以分为整型.浮点型.定点型三小类. 1.1 整型 (tiny:极小的, small ...

  10. BUAA2020软工作业——提问回顾与个人总结

    项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 提问回顾与个人总结 我在这个课程的目标是 进一步提高自己的编码能力,工程能力 这个作业在哪个具体方 ...