每一个点一定匹配其左边/右边的第一个出口(在最左/右边的出口左/右边的点直接删除即可),否则记到左右出口的距离分别为$x_{i}$和$y_{i}$

令$p_{i}$表示$i$匹配的出口(左0右1),结论:存在不合法当且仅当$p_{i}=0$、$p_{j}=1$、$x_{i}\ge x_{j}$且$y_{i}\le y_{j}$

充分性显然,考虑必要性,我们每一次所能做的就是删除最小的$x_{i}$(相同都要删除)且这些$x_{i}$的$p_{i}=0$或删除最小的$y_{i}$且这些$y_{i}$的$p_{i}=1$

如果能够不断删除,每一次至少删除1个,因此一定可以删除完(即合法),那么考虑当不能删除,令$j$为最小的$x_{i}$中某一个$p_{i}=1$($i$类似)

此时有$p_{i}=0$、$p_{j}=1$、$x_{i}\ge x_{j}$($j$是最小值)且$y_{i}\le y_{j}$,因此若不存在这种情况,一定可以不断删除,即必要性成立

先将所有位置按照$x_{i}$从小到大排序(相同$y_{i}$从大到小),即对于所有为$p_{i}=1$的位置,需要保证其之后($x_{i}$比其大)所有$y_{i}$小于等于它的位置都要选

(这里有一个小问题,就是当$x_{i}$和$y_{i}$都相同,那么对于排在后面,其前面与其相同的也会影响他,由于这两个点状态必然相同,不妨删去1个)

答案可以看作任选若干个位置$p_{i}=1$使得合法的方案数,实际上强制选择等价于强制不选(因为这些位置选择再对其之后的影响一定包含在$i$中),所以也可以理解为统计最长上升子序列的个数

考虑dp,令$f[i]$表示以$i$为结尾的最长上升子序列个数,线段树维护转移即可

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 #define mod 1000000007
5 #define mid (l+r>>1)
6 pair<int,int>c[N];
7 int V,r,n,m,t,ans,a[N],b[N],f[N*30],ls[N*30],rs[N*30];
8 void update(int &k,int l,int r,int x,int y){
9 if (!k)k=++V;
10 f[k]=(f[k]+y)%mod;
11 if (l==r)return;
12 if (x<=mid)update(ls[k],l,mid,x,y);
13 else update(rs[k],mid+1,r,x,y);
14 }
15 int query(int k,int l,int r,int x,int y){
16 if ((!k)||(l>y)||(x>r))return 0;
17 if ((x<=l)&&(r<=y))return f[k];
18 return (query(ls[k],l,mid,x,y)+query(rs[k],mid+1,r,x,y))%mod;
19 }
20 int main(){
21 scanf("%d%d",&n,&m);
22 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
23 for(int i=1;i<=m;i++)scanf("%d",&b[i]);
24 for(int i=1;i<=n;i++){
25 if ((a[i]<b[1])||(a[i]>b[m]))continue;
26 int x=lower_bound(b+1,b+m+1,a[i])-b;
27 c[++t]=make_pair(a[i]-b[x-1],-(b[x]-a[i]));
28 }
29 sort(c+1,c+t+1);
30 ans=1;
31 update(r,0,1e9,0,1);
32 for(int i=1;i<=t;i++){
33 if ((i)&&(c[i-1]==c[i]))continue;
34 int s=query(r,0,1e9,0,-c[i].second-1);
35 ans=(ans+s)%mod;
36 update(r,0,1e9,-c[i].second,s);
37 }
38 printf("%d",ans);
39 }

[atARC101F]Robots and Exits的更多相关文章

  1. 【ARC101F】Robots and Exits 树状数组优化DP

    ARC101F Robots and Exits 树状数组 有 $ n $ 个机器人和 $ m $ 个出口.这 $ n $ 个机器人的初始位置是 $ a_1,a_2.....a_n $ ,这 $ m ...

  2. 【题解】ARC101F Robots and Exits(DP转格路+树状数组优化DP)

    [题解]ARC101F Robots and Exits(DP转格路+树状数组优化DP) 先删去所有只能进入一个洞的机器人,这对答案没有贡献 考虑一个机器人只能进入两个洞,且真正的限制条件是操作的前缀 ...

  3. 【ARC101F】Robots and Exits 树状数组

    题目大意 有 \(n\) 个机器人和 \(m\) 个出口. 这 \(n\) 个机器人的初始位置是 \(a_1,a_2,\ldots,a_n\),这 \(m\) 个出口的位置是 \(b_1,b_2,\l ...

  4. AT4353-[ARC101D]Robots and Exits【LIS】

    正题 题目链接:https://www.luogu.com.cn/problem/AT4353 题目大意 数轴上有\(n\)个球\(m\)个洞,每次可以将所有球左移或者右移,球到洞的位置会掉下去. 求 ...

  5. Solution -「ARC 101D」「AT4353」Robots and Exits

    \(\mathcal{Description}\)   Link.   有 \(n\) 个小球,坐标为 \(x_{1..n}\):还有 \(m\) 个洞,坐标为 \(y_{1..m}\),保证上述坐标 ...

  6. Atcoder 乱做

    最近感觉自己思维僵化,啥都不会做了-- ARC103 F Distance Sums 题意 给定第 \(i\) 个点到所有点的距离和 \(D_i\) ,要求构造一棵合法的树.满足第 \(i\) 个点到 ...

  7. 【AtCoder】ARC101题解

    C - Candles 题解 点燃的一定是连续的一段,枚举左端点即可 代码 #include <bits/stdc++.h> #define enter putchar('\n') #de ...

  8. 【arc101】比赛记录

    这场还好切出了D,rt应该能涨,然而这场的题有点毒瘤,700分的D没多少人切,更别说EF了.(暴打出题人)既然这样,干脆就水一篇博客,做个简单的比赛记录. C - Candles 这题是一道一眼题,花 ...

  9. 网站 robots.txt 文件编写

    网站 robots.txt 文件编写 Intro robots.txt 是网站根目录下的一个纯文本文件,在这个文件中网站管理者可以声明该网站中不想被robots访问的部分,或者指定搜索引擎只收录指定的 ...

随机推荐

  1. Java初步学习——2021.09.24每日总结,第三周周五

    (1)今天做了什么: (2)明天准备做什么? (3)遇到的问题,如何解决? 今天学了将数组传递给方法和方法返回数组,其中传递的是数组的引用. 明天把例子做了,尽量把查找也学习了. 遇到了两个问题: 1 ...

  2. 洛谷2046 NOI2010海拔

    QwQ题目太长 这里就不复制了 题目 这个题...算是个比较经典的平面图最小割变成对偶图的最短路了QwQ 首先考虑最小割应该怎么做. 有一个性质,就是每个点的海拔要么是1,要么是0 QwQ不过这个我不 ...

  3. jquery-无缝滚动

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. 想要彻底搞懂大厂是如何实现Redis高可用的?看这篇文章就够了!(1.2W字,建议收藏)

    高可用HA(High Availability)是分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计减少系统不能提供服务的时间. 假设系统一直能够提供服务,我们说系统的可用性是100%.如果 ...

  5. 《JavaScript DOM编程艺术》:innerHTML

    来源:第七章 动态创建标记 innerHTML: 1.HTML页面建立空白div: <div id="testdiv"> </div> <script ...

  6. seata整合nacos完成分布式的部署

    seata整合nacos完成分布式的部署 一.背景 二.部署机器 三.部署步骤 1.在seata上创建命名空间 2.下载对应版本的seata 3.单机启动 1.修改seata配置文件 1.修改注册中心 ...

  7. rabbitmq死信队列和延时队列的使用

    死信队列&死信交换器:DLX 全称(Dead-Letter-Exchange),称之为死信交换器,当消息变成一个死信之后,如果这个消息所在的队列存在x-dead-letter-exchange ...

  8. 大牛针对零基础入门c语言详解指针(超详细)

    C语言指针说难不难但是说容易又是最容易出错的地方,因此不管是你要做什么只要用到C指针你就跳不过,今天咱们就以 十九个例子来给大家简单的分析一下指针的应用,最后会有C语言视频资料提供给大家更加深入的参考 ...

  9. Python基础——数据类型——字符串

    整数.浮点数.布尔值的用法大同小异,而Python字符串的一些用法不易记住,这里以廖雪峰教程为基础,进行一些思考和复习总结. 字符串是什么? 以单引号'或者双引号"括起来的任意文本,比如:& ...

  10. heihei

    adb shell screencap -p /sdcard/p1.pngadb pull /sdcard/p1.png c:\BaiduYunDownloadadb shell rm /sdcard ...