\(\text {FWT}\) 学习笔记

正常项的\(\text {FWT}\)

在\(\text {OI}\)中,我们经常会碰到这种问题:

  • 给出一个长度为\(n\)的序列\(a_{1,2,...,n},b_{1,2,...,n}\),求出
\[c_k=\sum_{i\oplus j=k}a_i b_j
\]

其中\(\oplus\)是定义的一种二进制下的运算。

对于这种问题,我们有一种通用的方法,我们称之为\(\text {FWT}\)。

我们考虑对于一个\(A\)构造一个\(FWT\)变换序列,满足:

\[\forall A\times B=C,FWT[A]\star FWT[B]=FWT[C]
\]

其中\(\times\)就是上文定义的卷积,\(\star\)是按位乘法。

我们考虑定义一种二进制运算的函数\(c(i,j)\),满足:

\[FWT[A]_i=\sum_{j=0}^{n} c(i,j) A_j
\]

于是,我们可以得到:

若存在:

\[C=A\times B
\]

则有:

\[FWT[C]_i=\sum_{j=0}^{n} c(i,j)\sum_{k\oplus d=j} A_kB_d
\]
\[=\sum_{j=0}^{n} \sum_{k\oplus d=j} c(i,k\oplus d) A_k B_d
\]

而我们根据\(FWT\)的定义我们又可以得到:

\[FWT[C]_i=FWT[A]_i\times FWT[B]_i=(\sum_{j=0}^{n} c(i,j)A_j)\times (\sum_{j=0}^{n} c(i,j)B_j)
\]
\[=\sum_{j=0}^{n} \sum_{k=0}^{n} c(i,j) c(i,k)A_j B_k
\]

于是,我们就可以得到:

\[c(i,j)c(i,k)=c(i,j\oplus k)
\]

不过因为是在二进制下的运算,所以一般构造的话都会满足

\[i=(i_1i_2...i_n)_2
\]

则满足:

\[c(i,j)=c(i_1,j_1)c(i_2,j_2)...c(i_n,j_n)
\]

于是,我们只需要知道\(c(0/1,0/1)\)即可。

但是,我们现在仅仅可以在\(\Theta(n^2)\)的时间复杂度内求出和转换\(FWT[A]\),显然不能满足我们的对优秀的时间的渴求。

我们想一下在\(\text {FFT}\)中,我们是如何做到\(\Theta(n\log n)\)转换的?分治!!!我们在\(\text {FWT}\)中也可以用类似的方法。

我们考虑对于当前的\(FWT[A]_i\)应该如何求出。

可以得到:

\[FWT[A]_i=\sum_{j=0}^{n} c(i,j)A_j
\]
\[=\sum_{j=0}^{n/2-1} c(i_1,0) A_j+\sum_{j=n/2}^{n} c(i_1,1)A_j
\]
\[=c(i_1,0)FWT[A_0]_i+c(i_1,1)FWT[A_1]_i
\]

其中\(FWT[A_0/A_1]\)就是子集的一个变换,与\(\text {FFT}\)类似。

我们发现如果我们构造转移矩阵:

\[\text {mat}=\begin{bmatrix}c_{0,0} ,c_{0,1}\\ c_{1,0},c_{1,1} \end{bmatrix}
\]

其实\(A\to FWT[A]\)每一次变换就是乘上\(\text {mat}\),那么\(FWT[A]\to A\)就是乘上\(\text {mat}\)的逆矩阵。逆矩阵直接手动构造即可。

一些例子

\(\wedge\)

对于并卷积,我们可以构造\(c(i,j)=[i|j]\),其中\([i|j]\)表示的是二进制下的\(i\)是二进制下的\(j\)的子集(每一位\(0/1\)相当于该元素是否在当前集合出现)。

\(\vee\)

对于或卷积,我们可以构造\(c(i,j)=[j|i]\)。

\(\oplus\)

对于异或卷积,我们可以构造\(c(i,j)=(-1)^{|i\wedge j|}\)。

模板题

就是上面三种运算的总和,代码戳这里打开

非模板的一些例子

CF449D Jzzhu and Numbers

CF1119H Triple + 题解 link

\(\text {FST}\)

我们需要解决这样一个问题:

  • 给出一个长度为\(n\)的序列\(a_{1,2,...,n},b_{1,2,...,n}\),求出:
\[c_i=\sum_{j\vee k=i,j\wedge k=0} a_j b_k
\]

对于这个问题,如果没有\(j\wedge k=0\)的话,这就是一个板的\(\text {FWT}\) \(\vee\)运算。我们发现其实\(j\wedge k=0\)的条件就相当于\(|j|+|k|=|j\vee k|\),于是,我们可以设二维数组\(f_i\),我们可以设转移式:

\[f_i=\sum_{j=0}^{i} h_j w_{i-j}
\]

其中\(h_{i,j}=[|j|=i]a_j,w_{i,j}=[|j|=i]b_j\)。

很显然,最后的\(c_i=f_{|i|,i}\)。

于是,我们就可以在\(\Theta(n\log^ 2 n)\)的时间复杂度内解决这个问题。

代码戳这里打开

\(k\)进制下的\(\text {FWT}\)

我们发现上面的这个东西其实都是在\(2\)进制下面计算的,那么如果我们要拓展到\(k\)进制我们应该怎么办呢?

很显然,我们应该定义广义的\(\wedge,\vee,\oplus\)。

  • $\wedge $

在\(k\)进制下,定义\(a\wedge b=\min\{a,b\}\)

  • \(\vee\)

在\(k\)进制下,定义\(a\vee b=\max\{a,b\}\)

  • \(\oplus\)

在\(k\)进制下,定义\(a\oplus b=(a+b)\bmod k\)

因为\(\wedge,\vee\)不是很常用,所以这里着重介绍一下\(\oplus\)。

我们要考虑如何构造\(c(i,j)\),我们发现我们需要满足:

\[c(i,j)c(i,k)=c(i,(j+k)\bmod k)
\]

我们在脑中想一下,诶,似乎单位根满足这个条件诶!

于是,我们可以构造矩阵:

\[\begin{bmatrix}1&1&1&\cdots &1\\1&w_k^1&w_k^2&\cdots&w_k^{k-1}\\ 1&w_k^2&w_k^4&\cdots&w_k^{2(k-1)} \\ \vdots&\vdots& \vdots&\ddots &\vdots\\ 1&w_k^{k-1}&w_k^{2(k-1)}&\cdots&w_k^{(k-1)(k-1)}\end{bmatrix}
\]

而它的逆矩阵就是:

\[\frac{1}{k}\begin{bmatrix}1&1&1&\cdots &1\\1&w_k^{-1}&w_k^{-2}&\cdots&w_k^{-(k-1)}\\ 1&w_k^{-2}&w_k^{-4}&\cdots&w_k^{-2(k-1)} \\ \vdots&\vdots& \vdots&\ddots &\vdots\\ 1&w_k^{-(k-1)}&w_k^{-2(k-1)}&\cdots&w_k^{-(k-1)(k-1)}\end{bmatrix}
\]

一些例题

CF1103E Radix sum+题解 link

随机推荐

  1. Ubuntu 16.04LTS下eclipse连接mysql

    第一部分:打开eclipse,新建一个web工程,新建一个类db_test.java(jdbc连接mysql的原理自行百度) import java.sql.*; public class db_te ...

  2. 取消Ubuntu开机硬盘自检

    修改/etc/fstab文件,最后一列全改为0,测试能正常启动,尚未出现再次自检的情况 sudo gedit /etc/fstab

  3. RHEL7.2系统下的软件管理(yum)、本地yum源和网络yum源的搭建

    在Liunx系统中,rpm和yum都可以安装软件,但rpm存在安装软件的依赖性,yum安装软件需要yum源 1.yum yum install softwarename ##安装 yum repoli ...

  4. Mybatis-Plus增强包

    简介 本框架(Gitee地址 )结合公司日常业务场景,对Mybatis-Plus 做了进一步的拓展封装,即保留MP原功能,又添加更多有用便捷的功能.具体拓展体现在数据自动填充(类似JPA中的审计).关 ...

  5. 灵魂画手:漫画图解 SSH

    OpenSSL 本身是一个软件库,这个软件被广泛的应用在系统服务器当中,他的主要功能是在网络通信的过程中,保证数据的一致性以及数据传输过程中的安全性.软件本身是由C语言编写,这使得他具备了跨平台的特性 ...

  6. Python+mirai开发QQ机器人起步教程(2021.9.9测试有效)

    参考:开发 mirai QQ机器人起步教程_叹之-CSDN博客_mirai python 本篇文章参考了以上博客,并对其中的失效内容和版本匹配问题进行了补充修改,实测能够成功运行.部分步骤的运行截图见 ...

  7. 稚晖君-最小linux服务器运行 nginx + netcore

    华为天才少年, B站科技大神,稚晖君(自称野生钢铁侠),多少科技爱好者拜服在他的全方位技术栈 今天我们就去入手一个他的量产产品 号称最小linux电脑 的"夸克" 到手之后,我们马 ...

  8. Java-SpringBoot整合SpringCloud

    SpringBoot整合SpringCloud 1. SpringCloud特点 SpringCloud专注于为典型的用例和扩展机制提供良好的开箱即用体验,以涵盖其他情况: 分布式/版本化配置 服务注 ...

  9. Centos6.5时间服务器NTP搭建

    NTP时间服务器安装与配置 第1章 Server端的安装与配置 1.1 查看系统是否已经安装ntp服务组件 rpm -qa | grep "ntp" #<==查看是否已经安装 ...

  10. Azure 实践(4)- CI/CD .netcore项目Docker构建及部署

    上篇已介绍了.netcore项目构建的相关步骤,本篇继续完善 1.什么是CI/CD CI/CD 中的"CI"始终指持续集成,它属于开发人员的自动化流程.成功的 CI 意味着应用代码 ...