$\text {FWT}$学习笔记
\(\text {FWT}\) 学习笔记
正常项的\(\text {FWT}\)
在\(\text {OI}\)中,我们经常会碰到这种问题:
- 给出一个长度为\(n\)的序列\(a_{1,2,...,n},b_{1,2,...,n}\),求出
\]
其中\(\oplus\)是定义的一种二进制下的运算。
对于这种问题,我们有一种通用的方法,我们称之为\(\text {FWT}\)。
我们考虑对于一个\(A\)构造一个\(FWT\)变换序列,满足:
\]
其中\(\times\)就是上文定义的卷积,\(\star\)是按位乘法。
我们考虑定义一种二进制运算的函数\(c(i,j)\),满足:
\]
于是,我们可以得到:
若存在:
\]
则有:
\]
\]
而我们根据\(FWT\)的定义我们又可以得到:
\]
\]
于是,我们就可以得到:
\]
不过因为是在二进制下的运算,所以一般构造的话都会满足
若
\]
则满足:
\]
于是,我们只需要知道\(c(0/1,0/1)\)即可。
但是,我们现在仅仅可以在\(\Theta(n^2)\)的时间复杂度内求出和转换\(FWT[A]\),显然不能满足我们的对优秀的时间的渴求。
我们想一下在\(\text {FFT}\)中,我们是如何做到\(\Theta(n\log n)\)转换的?分治!!!我们在\(\text {FWT}\)中也可以用类似的方法。
我们考虑对于当前的\(FWT[A]_i\)应该如何求出。
可以得到:
\]
\]
\]
其中\(FWT[A_0/A_1]\)就是子集的一个变换,与\(\text {FFT}\)类似。
我们发现如果我们构造转移矩阵:
\]
其实\(A\to FWT[A]\)每一次变换就是乘上\(\text {mat}\),那么\(FWT[A]\to A\)就是乘上\(\text {mat}\)的逆矩阵。逆矩阵直接手动构造即可。
一些例子
\(\wedge\)
对于并卷积,我们可以构造\(c(i,j)=[i|j]\),其中\([i|j]\)表示的是二进制下的\(i\)是二进制下的\(j\)的子集(每一位\(0/1\)相当于该元素是否在当前集合出现)。
\(\vee\)
对于或卷积,我们可以构造\(c(i,j)=[j|i]\)。
\(\oplus\)
对于异或卷积,我们可以构造\(c(i,j)=(-1)^{|i\wedge j|}\)。
模板题
就是上面三种运算的总和,代码戳这里打开。
非模板的一些例子
\(\text {FST}\)
我们需要解决这样一个问题:
- 给出一个长度为\(n\)的序列\(a_{1,2,...,n},b_{1,2,...,n}\),求出:
\]
对于这个问题,如果没有\(j\wedge k=0\)的话,这就是一个板的\(\text {FWT}\) \(\vee\)运算。我们发现其实\(j\wedge k=0\)的条件就相当于\(|j|+|k|=|j\vee k|\),于是,我们可以设二维数组\(f_i\),我们可以设转移式:
\]
其中\(h_{i,j}=[|j|=i]a_j,w_{i,j}=[|j|=i]b_j\)。
很显然,最后的\(c_i=f_{|i|,i}\)。
于是,我们就可以在\(\Theta(n\log^ 2 n)\)的时间复杂度内解决这个问题。
\(k\)进制下的\(\text {FWT}\)
我们发现上面的这个东西其实都是在\(2\)进制下面计算的,那么如果我们要拓展到\(k\)进制我们应该怎么办呢?
很显然,我们应该定义广义的\(\wedge,\vee,\oplus\)。
- $\wedge $
在\(k\)进制下,定义\(a\wedge b=\min\{a,b\}\)
- \(\vee\)
在\(k\)进制下,定义\(a\vee b=\max\{a,b\}\)
- \(\oplus\)
在\(k\)进制下,定义\(a\oplus b=(a+b)\bmod k\)
因为\(\wedge,\vee\)不是很常用,所以这里着重介绍一下\(\oplus\)。
我们要考虑如何构造\(c(i,j)\),我们发现我们需要满足:
\]
我们在脑中想一下,诶,似乎单位根满足这个条件诶!
于是,我们可以构造矩阵:
\]
而它的逆矩阵就是:
\]
一些例题
随机推荐
- rabbitMq可靠性投递之手动ACK
#手动应答#spring.rabbitmq.listener.simple.acknowledge-mode=manual#spring.rabbitmq.listener.simple.acknow ...
- Kubernetes-kubectl介绍
前言 本篇是Kubernetes第三篇,大家一定要把环境搭建起来,看是解决不了问题的,必须实战.本篇重要介绍kubectl的使用. Kubernetes系列文章: Kubernetes介绍 Kuber ...
- Python之requests模块-cookie
cookie并不陌生,与session一样,能够让http请求前后保持状态.与session不同之处,在于cookie数据仅保存于客户端.requests也提供了相应到方法去处理cookie. 在py ...
- Linux命令进阶篇之一
利用file命令查看那文件的类型 cd /etc 这里面的文件 命令:file 语法:file [-bLvz] 文件 解释:-b:显示结果,但是不显示文件名称 -L:直接显示符号链接所指向的文件的类型 ...
- docker数据卷(Data Volumes)
Docker宿主机和容器之间文件拷贝docker copy 前言: Docker 数据管理 在生产环境中使用 Docker ,往往需要对数据进行持久化,或者需要在多个容器之间进行 数据共享,这必然涉及 ...
- Python - 面向对象编程 - __call__()
__call()__ 的作用 使得类实例对象可以像普通函数那样被调用 实际栗子 from typing import Callable class PoloBlog: def __init__(sel ...
- 在C#中将图像转换为BASE64
本教程说明如何在C#.NET Windows Forms Application中将图像转换为base64字符串,以及将base64字符串转换为图像.您可以创建一个新的Windows窗体应用程序项目来 ...
- JS003. 事件监听和监听滚动条的三种参数( addEventListener( ) )
全局 1 window.addEventListener('scroll', () => { 2 console.log('------') 3 console.log(document.doc ...
- js 点击复制文字
复制input里面的文字 html: <input id="content" class="form-control" type="text&q ...
- python库--pandas--Series
方法 返回数据类型 参数 说明 Series(一维) .Series() Series 实例s 创建一维数据类型Series data=None 要转化为Series的数据(也可用dict ...