Content

有 \(t\) 组询问,每组询问给定四个整数 \(a,b,c,d\),请求出满足

\[\dfrac{a}{x}+\dfrac{b}{c}=\dfrac{d}{y}
\]

的正整数对 \((x,y)\) 的个数。

数据范围:\(0\leqslant t\leqslant 20,1\leqslant a,b,c,d\leqslant 10^6,d\times c\leqslant 10^6\)。

Solution

提示性很强的一道题目。

我们先来尝试化简一下这个式子:

两边同时乘以 \(xcy\),得 \(acy+bxy=dcx\)。

把含有 \(x\) 的项移到左边,得到 \(bxy-dcx=-acy\)

整理可得 \((dc-by)x=acy\)

\(\therefore x=\dfrac{acy}{dc-by}\)

化简到这里应该可以明白了:我们从小到大枚举 \(y\),看是否有 \(acy\mod(dc-by)=0\),如果满足的话必然会存在整数 \(x\)。

下界显然是 \(1\),但是如何确定 \(y\) 枚举的上界呢?

让我们再来看看题目:

……满足 \(\dfrac{a}{x}+\dfrac{b}{c}=\dfrac{d}{y}\) 的正整数对 \((x,y)\) 的个数。

……\(1\leqslant a,b,c,d\leqslant 10^6\)。

是否发现了什么?

题目中限制了 \(x,y,a,b,c,d\) 均为正整数!

而又因为 \(acy\) 必然是正整数,所以想要让 \(x\) 为正整数,必然要满足 \(dc-by\) 的结果也是个正整数才行,也就是 \(dc-by>0\)。

再以 \(y\) 为主元化简这个不等式:

\(-by>-dc\)

\(\therefore y<\dfrac{dc}{b}\)。

这下你应该就明白了。

但是!这里会出现一个 bug:当 \(\dfrac{dc}{b}\) 的结果是一个整数的时候,枚举的时候就不能够枚举到 \(\dfrac{dc}{b}\)。理由很容易想通。

所以,我们应当分类讨论一下上界:

  • 当 \(b\mid dc\) 的时候,上界就是 \(\dfrac{dc}{b}-1\)。
  • 否则,上界就是 \(\dfrac{dc}{b}\)。

以为我是在胡闹?再看题目:

……\(d\times c\leqslant 10^6\)。

好的,现在可以保证这样枚举不会爆炸了。于是就可以愉快地枚举了。

Code

int t, a, b, c, d;

int main() {
t = Rint;
while(t--) {
a = Rint, b = Rint, c = Rint, d = Rint;
int ans = 0;
F(y, 1, d * c / b - (!((d * c) % b) ? 1 : 0)) {
if(1ll * d * c - 1ll * b * y == 0) continue; //该行可省略
if(!((1ll * a * c * y) % (1ll * d * c - 1ll * b * y)))
ans++;
}
printf("%d\n", ans);
}
return 0;
}

LuoguP7094 [yLOI2020] 金陵谣 题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. vue-ref指令

    $refs是数组

  2. myeclipse字体大小格式的设置

  3. P7091 数上的树

    题目传送门. 首先将 \(n\) 分解质因数,用 DFS 求出 \(n\) 的所有因数,记为 \(d_1,d_2,\cdots,d_c\),跑一遍反素数那题的代码可知 \(c\leq 23327\)( ...

  4. GWAS与GS模型介绍与比较

    目录 1.GWAS模型 1.1卡方检验 1.2 相关性系数的t检验 1.3 一般线性模型GLM 1.4 混合线性模型MLM 1.5 压缩混合线性模型CMLM 1.6 SUPER 1.7 FarmCPU ...

  5. python 新闻管理系统——启示

    mysql取整函数: mysql函数ceil.floor.round mysql 取整 1.ceil() / ceiling() 向上取整 ex: ceil(1.2) = 2 2.floor() 向下 ...

  6. centOS6和7单用户修改密码

    CentOS6 1.       进入启动系统倒计时的时候,按esc 之后进入一下界面: 2.       按a 键进入修改内核参数页面 3.       在quiet后面加入空格和1 ,如下:回车进 ...

  7. ping 的原理

    ping 的原理ping 程序是用来探测主机到主机之间是否可通信,如果不能ping到某台主机,表明不能和这台主机建立连接.ping 使用的是ICMP协议,它发送icmp回送请求消息给目的主机.ICMP ...

  8. 53-Linked List Cycle II

    Linked List Cycle II My Submissions QuestionEditorial Solution Total Accepted: 74093 Total Submissio ...

  9. Oracle-SQL语句的语法顺序和执行顺序

    SQL语句的语法顺序和执行顺序了,我们常见的SQL语法顺序如下: SELECT DISTINCT <Top Num> <select list>FROM [left_table ...

  10. STM32 BootLoader升级固件

    一.知识点 1.BootLoader就是单片机启动时候运行的一段小程序,这段程序负责单片机固件的更新,也就是单片机选择性的自己给自己下程序.可以更新,也可以不更新,更新的话,BootLoader更新完 ...