Torch.stack()

1. 概念

在一个新的维度上连接一个张量序列

2. 参数

  • tensors (sequence)需要连接的张量序列
  • dim (int)在第dim个维度上连接

注意输入的张量shape要完全一致,且dim必须小于len(tensors)。

3. 举例

3.1 四个shape为[3, 3]的张量

以下面这4个张量,每个张量shape为[3, 3]。

1 a = torch.Tensor([[1,2,3],[4,5,6],[7,8,9]])
2 b = torch.Tensor([[10,20,30],[40,50,60],[70,80,90]])
3 c = torch.Tensor([[100,200,300],[400,500,600],[700,800,900]])
4 d = torch.Tensor([[1000,2000,3000],[4000,5000,6000],[7000,8000,9000]])

3.1.1 dim=0的情况下,直接来看结果。

torch.stack((a,b,c,d),dim=0)

此时在第0个维度上连接,新张量的shape可以发现为[4, 3, 3],4代表在第0个维度有4项。

观察可以得知:即初始的四个张量,即a、b、c、d四个初始张量。

可以理解为新张量的第0个维度上连接a、b、c、d。

3.1.2 dim=1的情况下

torch.stack((a,b,c,d),dim=1)

此时在第1个维度上连接,新张量的shape可以发现为[3, 4, 3],4代表在第1个维度有4项。

观察可以得知:

  • 新张量[0][0]为a[0],[0][1]为b[0],[0][2]为c[0],[0][3]为d[0]
  • 新张量[1][0]为a[1],[1][1]为b[1],[1][2]为c[1],[1][3]为d[1]
  • 新张量[2][0]为a[2],[2][1]为b[2],[2][2]为c[2],[2][3]为d[2]

可以理解为新张量的第1个维度上连接a、b、c、d的第0个维度单位,具体地说,在新张量[i]中连接a[i]、b[i]、c[i]、d[i],即将a[i]赋给新张量[i][0]、b[i]赋给新张量[i][1]、c[i]赋给新张量[i][2]、d[i]赋给新张量[i][3]。

3.1.2 dim=2的情况下

此时在第2个维度上连接,新张量的shape可以发现为[3, 3, 4],4代表在第2个维度有4项。

观察可以得知:

  • 新张量[0][0][0]为a[0][0],[0][0][1]为b[0][0],[0][0][2]为c[0][0],[0][0][3]为d[0][0]
  • 新张量[0][1][0]为a[0][1],[0][1][1]为b[0][1],[0][1][2]为c[0][1],[0][1][3]为d[0][1]
  • 新张量[0][2][0]为a[0][2],[0][2][1]为b[0][2],[0][2][2]为c[0][2],[0][2][3]为d[0][2]
  • 新张量[1][0][0]为a[1][0],[1][0][1]为b[1][0],[1][0][2]为c[1][0],[1][0][3]为d[1][0]
  • 新张量[1][1][0]为a[1][1],[1][1][1]为b[1][1],[1][1][2]为c[1][1],[1][1][3]为d[1][1]
  • 新张量[1][2][0]为a[1][2],[1][2][1]为b[1][2],[1][2][2]为c[1][2],[1][2][3]为d[1][2]
  • 新张量[2][0][0]为a[2][0],[2][0][1]为b[2][0],[2][0][2]为c[2][0],[2][0][3]为d[2][0]
  • 新张量[2][1][0]为a[2][1],[2][1][1]为b[2][1],[2][1][2]为c[2][1],[2][1][3]为d[2][1]
  • 新张量[2][2][0]为a[2][2],[2][2][1]为b[2][2],[2][2][2]为c[2][2],[2][2][3]为d[2][2]

可以理解为新张量的第2个维度上连接a、b、c、d的第1个维度的单位,具体地说,在新张量[i][j]中连接a[i][j]、b[i][j]、c[i][j]、d[i][]j。

3.1.3 总结

通过dim=0、1、2的情况,可以总结并推涨出规律:

假设有n个[x,y]的张量,当dim=z时。新张量在第z个维度上连接n个张量第z-1维度的单位,具体来说,新张量[i][i+1]..[i+z-1]中依次连接n个向量[i][i+1]..[i+z-1]。

3.2 7个shape为[5, 7, 4, 2]的张量

1 a1 = torch.rand([5, 7, 4, 3])
2 a2 = a1 + 1
3 a3 = a2 + 1
4 a4 = a3 + 1
5 a5 = a4 + 1
6 a6 = a5 + 1
7 a7 = a6 + 1

假设dim=3时连接

test = torch.stack((a1, a2, a3, a4, a5, a6, a7), dim=3)

7个张量在第3个维度连接后形成的新张量赋为test,test的shape为[5, 7, 4, 7, 3],代表在第3个维度有7项。

随机(在新张量[0][0][0]到新张量[4][6][3]区间内)查看一个新张量第3维度上的单位:

a = test[0][1][2]

再根据总结的规律,将7个向量中的[0][1][2]连接起来,再次查看,验证了规律。

b = torch.zeros(0)
for i in (a1, a2, a3, a4, a5, a6, a7):
b = torch.cat((b, i[0][1][2]), dim=0)

4. 理解

通过shape来看,假设shape为[a, b, c... z],有n个shape相同的张量,在dim=x时连接n个张量,可以得到新张量,shape为[a, b, c, ... n, ...z],其中n所在维度即为第x个维度。

然后即可通过新张量[i][i+1]..[i+x-1]看作索引,对应的数据为n个张量[i][i+1][i+x-1]按顺序连接。

 

Pytorch中stack()方法的理解的更多相关文章

  1. 对javascript中call()方法的理解

    call ( thisObj [, arg1 [, arg2 [,  [, argN] ] ] ]) call()方法:官方介绍是,调用一个对象的一个方法,以另一个对象替换当前对象. call()方法 ...

  2. javascript中concat方法深入理解

    最近在恶补js知识的时候,总是会因为js强大的语法而感到震撼.因为以前对前端方面的疏忽,导致了一些理解的错误.因此痛改前非,下定决心,不管做什么事情,都要有专研的精神. 在介绍前,抛出一个问题:如何将 ...

  3. 转载:Java多线程中join方法的理解

    转载自:http://uule.iteye.com/blog/1101994 thread.Join把指定的线程加入到当前线程,可以将两个交替执行的线程合并为顺序执行的线程.比如在线程B中调用了线程A ...

  4. Java中join()方法的理解

    thread.Join把指定的线程加入到当前线程,可以将两个交替执行的线程合并为顺序执行的线程. 比如在线程B中调用了线程A的Join()方法,直到线程A执行完毕后,才会继续执行线程B. t.join ...

  5. Java多线程中join方法的理解

    thread.Join把指定的线程加入到当前线程,可以将两个交替执行的线程合并为顺序执行的线程.比如在线程B中调用了线程A的Join()方法,直到线程A执行完毕后,才会继续执行线程B. t.join( ...

  6. [前端] js中call方法的理解和思考

    最近接手前端的工作,对当前项目中自制的js框架下,js的使用产生了非常多的困惑.尤其是js的类,对象,函数,this等等相互之间的关系和转换,以前学过也忘得差不多了,现在基本相当于重新看. js中的函 ...

  7. 关于对String中intern方法的理解

    在java的String中有个一直被我们忽视了的方法intern方法:它的官方解释是:一个初始时为空的字符串池,它由类 String 私有地维护. 当调用 intern 方法时,如果池已经包含一个等于 ...

  8. C#中Thread类中Join方法的理解(转载)

    指在一线程里面调用另一线程join方法时,表示将本线程阻塞直至另一线程终止时再执行      比如 using System; namespace TestThreadJoin { class Pro ...

  9. Java中hashCode方法的理解以及此小结的总结练习(代码)

    笔记: “散列码”就是用来把一堆对象散到各自的队列里去的一种标识码. 举个形象一点的例子,一年有 365 天,从 1 编号到 365,下面我定义一种编码方法,每个人按照他生日那天的编号作为他的标识码, ...

随机推荐

  1. 从浏览器渲染层面解析css3动效优化原理

    引言 在h5开发中,我们经常会需要实现一些动效来让页面视觉效果更好,谈及动效便不可避免地会想到动效性能优化这个话题: 减少页面DOM操作,可以使用CSS实现的动效不多出一行js代码 使用绝对定位脱离让 ...

  2. mysql 不常用的存储引擎

    csv 数据文件可以编辑;每一列不能为空,不支持索引:文件保存数据,cat可以查看数据;用处:数据交换中间表--excel表导入数据等; Archive 对表数据进行压缩,磁盘i/o减少:节省空间;只 ...

  3. javascript 求最大前5个数; 对象 深拷贝 deep copy

    * 用数组 function getTopN(a, n) { function _cloneArray(aa) { var n = aa.length, a = new Array(n); for ( ...

  4. Uncaught TypeError: upload is not a function at HTMLInputElement.onclick

    js 中标签的id名称不能和方法名一样, <tr> <td><input type="button" id="login" val ...

  5. iGuard6.0 — 各适其用的网站防护体系

    ​随着互联网新技术的涌现,网站的架构技术和涉及的资源也日益多样且复杂化.这对网站各类资源的防护工作也提出了更高的挑战和更细粒度的需求. 我们经常碰到的用户真实需求包括: 我的 CMS 制作系统,会不会 ...

  6. self是什么?什么时候加?什么时候不加?

    Python里边self倒底是什么?什么时候加self?什么时候不加? self是什么? 如果你问别人大多人回答是: 指对象本身,然后噼里啪啦说一堆,然后听完的你,仍然完全搞不清楚,什么时候变量前需要 ...

  7. ServerManager.exe 0xc0000135 应用程序错误(Windows Server 2016、2019)

    前言 将 Windows Server 2019或2016 .NET Framework移除. IIS卸载后,服务器管理器.控制面板部分功能.事件查看器等都无法正常开启. 解决办法 打开CMD,输入D ...

  8. HashMap扩容和ConcurrentHashMap

    HashMap 存储结构 HashMap是数组+链表+红黑树(1.8)实现的. (1)Node[] table,即哈希桶数组.Node是内部类,实现了Map.Entry接口,本质是键值对. stati ...

  9. 关于java实体类时间类型的格式化调整问题

    关于java bean在后台\转化为json交给前台时间类型格式调整的方法: 首先要引入fastjson依赖. 在实体类上使用注解: @JsonFormat(pattern = "yyyy- ...

  10. yolov5实战之二维码检测

    目录 1.前沿 2.二维码数据 3.训练配置 3.1数据集设置 3.2训练参数的配置 3.3网络结构设置 3.4训练 3.5结果示例 附录:数据集下载 1.前沿 之前总结过yolov5来做皮卡丘的检测 ...