转自:https://www.cnblogs.com/starhu/p/6400348.html?utm_source=itdadao&utm_medium=referral

  1. 堆大小设置
    JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
    典型设置:

    • java -Xmx3550m -Xms3550m -Xmn2g -Xss128k
      -
      Xmx3550m:设置JVM最大可用内存为3550M。
      -Xms3550m:设置JVM促使内存为3550m。此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。
      -Xmn2g:设置年轻代大小为2G。整个JVM内存大小=年轻代大小 + 年老代大小 + 持久代大小。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。
      -Xss128k:设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。更具应用的线程所需内存大小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右。
    • java -Xmx3550m -Xms3550m -Xss128k -XX:NewRatio=4 -XX:SurvivorRatio=4 -XX:MaxPermSize=16m -XX:MaxTenuringThreshold=0
      -XX:NewRatio=4
      :设置年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代)。设置为4,则年轻代与年老代所占比值为1:4,年轻代占整个堆栈的1/5
      -XX:SurvivorRatio=4:设置年轻代中Eden区与Survivor区的大小比值。设置为4,则两个Survivor区与一个Eden区的比值为2:4,一个Survivor区占整个年轻代的1/6
      -XX:MaxPermSize=16m:设置持久代大小为16m。
      -XX:MaxTenuringThreshold=0:设置垃圾最大年龄。如果设置为0的话,则年轻代对象不经过Survivor区,直接进入年老代。对于年老代比较多的应用,可以提高效率。如果将此值设置为一个较大值,则年轻代对象会在Survivor区进行多次复制,这样可以增加对象再年轻代的存活时间,增加在年轻代即被回收的概论。
  2. 回收器选择
    JVM给了三种选择:串行收集器、并行收集器、并发收集器,但是串行收集器只适用于小数据量的情况,所以这里的选择主要针对并行收集器和并发收集器。默认情况下,JDK5.0以前都是使用串行收集器,如果想使用其他收集器需要在启动时加入相应参数。JDK5.0以后,JVM会根据当前系统配置进行判断。
    1. 吞吐量优先的并行收集器
      如上文所述,并行收集器主要以到达一定的吞吐量为目标,适用于科学技术和后台处理等。
      典型配置

      • java -Xmx3800m -Xms3800m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20
        -XX:+UseParallelGC
        :选择垃圾收集器为并行收集器。此配置仅对年轻代有效。即上述配置下,年轻代使用并发收集,而年老代仍旧使用串行收集。
        -XX:ParallelGCThreads=20
        :配置并行收集器的线程数,即:同时多少个线程一起进行垃圾回收。此值最好配置与处理器数目相等。
      • java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20 -XX:+UseParallelOldGC
        -XX:+UseParallelOldGC
        :配置年老代垃圾收集方式为并行收集。JDK6.0支持对年老代并行收集。
      • java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC  -XX:MaxGCPauseMillis=100
        -XX:MaxGCPauseMillis=100
        :设置每次年轻代垃圾回收的最长时间,如果无法满足此时间,JVM会自动调整年轻代大小,以满足此值。
      • java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC  -XX:MaxGCPauseMillis=100 -XX:+UseAdaptiveSizePolicy
        -XX:+UseAdaptiveSizePolicy
        :设置此选项后,并行收集器会自动选择年轻代区大小和相应的Survivor区比例,以达到目标系统规定的最低相应时间或者收集频率等,此值建议使用并行收集器时,一直打开。
    2. 响应时间优先的并发收集器
      如上文所述,并发收集器主要是保证系统的响应时间,减少垃圾收集时的停顿时间。适用于应用服务器、电信领域等。
      典型配置
      • java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:ParallelGCThreads=20 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC
        -XX:+UseConcMarkSweepGC:设置年老代为并发收集。测试中配置这个以后,-XX:NewRatio=4的配置失效了,原因不明。所以,此时年轻代大小最好用-Xmn设置。
        -XX:+UseParNewGC:设置年轻代为并行收集。可与CMS收集同时使用。JDK5.0以上,JVM会根据系统配置自行设置,所以无需再设置此值。
      • java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseConcMarkSweepGC -XX:CMSFullGCsBeforeCompaction=5 -XX:+UseCMSCompactAtFullCollection
        -XX:CMSFullGCsBeforeCompaction:由于并发收集器不对内存空间进行压缩、整理,所以运行一段时间以后会产生“碎片”,使得运行效率降低。此值设置运行多少次GC以后对内存空间进行压缩、整理。
        -XX:+UseCMSCompactAtFullCollection:打开对年老代的压缩。可能会影响性能,但是可以消除碎片
  3. 辅助信息
    JVM提供了大量命令行参数,打印信息,供调试使用。主要有以下一些:
    • -XX:+PrintGC
      输出形式:[GC 118250K->113543K(130112K), 0.0094143 secs]

                      [Full GC 121376K->10414K(130112K), 0.0650971 secs]

    • -XX:+PrintGCDetails
      输出形式:[GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633 secs]

                      [GC [DefNew: 8614K->8614K(9088K), 0.0000665 secs][Tenured: 112761K->10414K(121024K), 0.0433488 secs] 121376K->10414K(130112K), 0.0436268 secs]

    • -XX:+PrintGCTimeStamps -XX:+PrintGC:PrintGCTimeStamps可与上面两个混合使用
      输出形式:11.851: [GC 98328K->93620K(130112K), 0.0082960 secs]
    • -XX:+PrintGCApplicationConcurrentTime:打印每次垃圾回收前,程序未中断的执行时间。可与上面混合使用
      输出形式:Application time: 0.5291524 seconds
    • -XX:+PrintGCApplicationStoppedTime:打印垃圾回收期间程序暂停的时间。可与上面混合使用
      输出形式:Total time for which application threads were stopped: 0.0468229 seconds
    • -XX:PrintHeapAtGC:打印GC前后的详细堆栈信息
      输出形式:
      34.702: [GC {Heap before gc invocations=7:
       def new generation   total 55296K, used 52568K [0x1ebd0000, 0x227d0000, 0x227d0000)
      eden space 49152K,  99% used [0x1ebd0000, 0x21bce430, 0x21bd0000)
      from space 6144K,  55% used [0x221d0000, 0x22527e10, 0x227d0000)
        to   space 6144K,   0% used [0x21bd0000, 0x21bd0000, 0x221d0000)
       tenured generation   total 69632K, used 2696K [0x227d0000, 0x26bd0000, 0x26bd0000)
      the space 69632K,   3% used [0x227d0000, 0x22a720f8, 0x22a72200, 0x26bd0000)
       compacting perm gen  total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)
         the space 8192K,  35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)
          ro space 8192K,  66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)
          rw space 12288K,  46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)
      34.735: [DefNew: 52568K->3433K(55296K), 0.0072126 secs] 55264K->6615K(124928K)Heap after gc invocations=8:
       def new generation   total 55296K, used 3433K [0x1ebd0000, 0x227d0000, 0x227d0000)
      eden space 49152K,   0% used [0x1ebd0000, 0x1ebd0000, 0x21bd0000)
        from space 6144K,  55% used [0x21bd0000, 0x21f2a5e8, 0x221d0000)
        to   space 6144K,   0% used [0x221d0000, 0x221d0000, 0x227d0000)
       tenured generation   total 69632K, used 3182K [0x227d0000, 0x26bd0000, 0x26bd0000)
      the space 69632K,   4% used [0x227d0000, 0x22aeb958, 0x22aeba00, 0x26bd0000)
       compacting perm gen  total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)
         the space 8192K,  35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)
          ro space 8192K,  66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)
          rw space 12288K,  46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)
      }
      , 0.0757599 secs]
    • -Xloggc:filename:与上面几个配合使用,把相关日志信息记录到文件以便分析。
  4. 常见配置汇总
    1. 堆设置

      • -Xms:初始堆大小
      • -Xmx:最大堆大小
      • -XX:NewSize=n:设置年轻代大小
      • -XX:NewRatio=n:设置年轻代和年老代的比值。如:为3,表示年轻代与年老代比值为1:3,年轻代占整个年轻代年老代和的1/4
      • -XX:SurvivorRatio=n:年轻代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如:3,表示Eden:Survivor=3:2,一个Survivor区占整个年轻代的1/5
      • -XX:MaxPermSize=n:设置持久代大小
    2. 收集器设置
      • -XX:+UseSerialGC:设置串行收集器
      • -XX:+UseParallelGC:设置并行收集器
      • -XX:+UseParalledlOldGC:设置并行年老代收集器
      • -XX:+UseConcMarkSweepGC:设置并发收集器
    3. 垃圾回收统计信息
      • -XX:+PrintGC
      • -XX:+PrintGCDetails
      • -XX:+PrintGCTimeStamps
      • -Xloggc:filename
    4. 并行收集器设置
      • -XX:ParallelGCThreads=n:设置并行收集器收集时使用的CPU数。并行收集线程数。
      • -XX:MaxGCPauseMillis=n:设置并行收集最大暂停时间
      • -XX:GCTimeRatio=n:设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)
    5. 并发收集器设置
      • -XX:+CMSIncrementalMode:设置为增量模式。适用于单CPU情况。
      • -XX:ParallelGCThreads=n:设置并发收集器年轻代收集方式为并行收集时,使用的CPU数。并行收集线程数。

四、调优总结

      1. 年轻代大小选择

        • 响应时间优先的应用尽可能设大,直到接近系统的最低响应时间限制(根据实际情况选择)。在此种情况下,年轻代收集发生的频率也是最小的。同时,减少到达年老代的对象。
        • 吞吐量优先的应用:尽可能的设置大,可能到达Gbit的程度。因为对响应时间没有要求,垃圾收集可以并行进行,一般适合8CPU以上的应用。
      2. 年老代大小选择
        • 响应时间优先的应用:年老代使用并发收集器,所以其大小需要小心设置,一般要考虑并发会话率会话持续时间等一些参数。如果堆设置小了,可以会造成内存碎片、高回收频率以及应用暂停而使用传统的标记清除方式;如果堆大了,则需要较长的收集时间。最优化的方案,一般需要参考以下数据获得:

          • 并发垃圾收集信息
          • 持久代并发收集次数
          • 传统GC信息
          • 花在年轻代和年老代回收上的时间比例

          减少年轻代和年老代花费的时间,一般会提高应用的效率

        • 吞吐量优先的应用:一般吞吐量优先的应用都有一个很大的年轻代和一个较小的年老代。原因是,这样可以尽可能回收掉大部分短期对象,减少中期的对象,而年老代尽存放长期存活对象。
      3. 较小堆引起的碎片问题
        因为年老代的并发收集器使用标记、清除算法,所以不会对堆进行压缩。当收集器回收时,他会把相邻的空间进行合并,这样可以分配给较大的对象。但是,当堆空间较小时,运行一段时间以后,就会出现“碎片”,如果并发收集器找不到足够的空间,那么并发收集器将会停止,然后使用传统的标记、清除方式进行回收。如果出现“碎片”,可能需要进行如下配置:
        • -XX:+UseCMSCompactAtFullCollection:使用并发收集器时,开启对年老代的压缩。
        • -XX:CMSFullGCsBeforeCompaction=0:上面配置开启的情况下,这里设置多少次Full GC后,对年老代进行压缩

【java虚拟机】jvm调优的更多相关文章

  1. 《深入理解Java虚拟机》调优案例分析与实战

    上节学习回顾 在上一节当中,主要学习了Sun JDK的一些命令行和可视化性能监控工具的具体使用,但性能分析的重点还是在解决问题的思路上面,没有好的思路,再好的工具也无补于事. 本节学习重点 在书本上本 ...

  2. Java虚拟机性能调优相关

    一.JVM内存模型及垃圾收集算法 1.根据Java虚拟机规范,JVM将内存划分为:New(年轻代)Tenured(年老代)永久代(Perm) 其中New和Tenured属于堆内存,堆内存会从JVM启动 ...

  3. Java虚拟机性能调优(一)

    Java虚拟机监控与调优,借助Java自带分析工具. jps:JVM Process Status Tool,显示指定系统内所有的HotSpot虚拟机进程 jstat:JVM Statistics M ...

  4. Java之JVM调优案例分析与实战(1) - 高性能硬件上的程序部署策略

    本JVM系列均来源于<深入理解Java虚拟机>一书中,版权归该书作者所有. 环境:一个15万PV/天左右的在线文档类型网站最近更换了硬件系统,新系统硬件为4个CPU.16GB物理内存.OS ...

  5. Java之JVM调优案例分析与实战(4) - 外部命令导致系统缓慢

    环境:这是一个来自网络的案例:一个数字校园应用系统,运行在一台4个CPU的Solaris 10操作系统上,中间件为ClassFish服务器.系统在进行大并发压力测试的时候,发现请求响应时间比较慢,通过 ...

  6. Java之JVM调优案例分析与实战(3) - 堆外内存导致的溢出错误

    环境:基于B\S的点子考试系统,为了发现客户端能实时地从服务端接收考试数据,系统使用了逆向AJAX技术(也称Comet或Server Side Push),选用CometD1.1.1作为服务端推送框架 ...

  7. java面试-JVM调优和参数配置,如何查看JVM系统参数默认值

    一.JVM的参数类型: 1.标配参数: java -version java -help 2.X参数: -Xmixed 混合模式(先编译后执行) -Xint  解释执行 -Xcomp 第一次使用就编译 ...

  8. Java之JVM调优案例分析与实战(5) - 服务器JVM进程奔溃

    环境:一个基于B/S的MIS系统,硬件为2个CPU.8GB内存的HP系统,服务器是WebLogic9.2(就是第二个案例中的那个系统).正常运行一段时间后,最近发现在运行期间频繁出现集群节点的虚拟机进 ...

  9. Java之JVM调优案例分析与实战(2) - 集群间同步导致的内存溢出

    环境:一个基于B/S的MIS系统,硬件为两台2个CPU.8GB内存的HP小型机,服务器是WebLogic 9.2,每台机器启动了3个WebLogic实例,构成一个6个节点的亲合式集群. 说明:由于是亲 ...

  10. java虚拟机学习-JVM调优总结-调优方法(12)

    JVM调优工具 Jconsole,jProfile,VisualVM Jconsole : jdk自带,功能简单,但是可以在系统有一定负荷的情况下使用.对垃圾回收算法有很详细的跟踪.详细说明参考这里 ...

随机推荐

  1. 高校表白App-团队冲刺第六天

    今天要做什么 在引导页的基础上添加小红点,并且在滑动时进行增强用户体验的修饰 做了什么 在布局中成功添加小红点,并在activity中得到实现;滑动在3/4时发生渐变,增强用户体验;滑动可回退;在最后 ...

  2. Java基础00-函数式接口33

    1. 函数式接口 1.1 函数式接口概述 代码示例: 定义一个接口: //次注解表示该接口为函数式接口,只能有一个抽象方法,如果有第二个就会报错. @FunctionalInterface publi ...

  3. [刘阳Java]_Spring IOC程序代码如何编写_第3讲

    第2讲我们介绍了Spring IOC的基本原理,这篇文章告诉大家Spring IOC程序代码是如何编写的,从而可以更好的理解IOC和DI的概念(所有的Java类的初始化工作扔给Spring框架,一个J ...

  4. 【剑指offer】73.数组中出现次数超过一半的数字

    73.数组中出现次数超过一半的数字 知识点:数组:哈希:占领地思想: 题目描述 数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字.例如输入一个长度为9的数组{1,2,3,2,2,2,5,4 ...

  5. Jmeter性能测试指标分析

    一.Aggregate Report 是 JMeter 常用的一个 Listener,中文被翻译为"聚合报告 如果大家都是做Web应用的性能测试,例如访问百度请求为例,线程10,循环10次, ...

  6. Postman进行webservices接口测试

    1.接口地址 webservices是什么? 更多webservices接口地址访问地址:http://www.webxml.com.cn/zh_cn/web_services.aspx webser ...

  7. 图像旋转的FPGA实现(一)

    继续图像处理专题,这次写的是图像旋转.若要说小分辨率的图像旋转倒也简单,直接将原始图像存储在BRAM中,然后按照旋转后的位置关系取出便是.但是对于高分辨的图像(720P及以上)就必须得用DDR3或者D ...

  8. IntelliJ IDEA2021.2 常用快捷键汇总总结

    Java开发环境:Windows10 64bit+JDK8+IDEA2021.2 =========================================================== ...

  9. Windows7/10 防火墙开放Oracle数据库1521端口

    安装Oracle 12C数据库,在局域网中,允许其他电脑访问,则需要开启防火墙的 1521端口 ==================================================== ...

  10. DNS的原理和解析过程

    DNS的解析原理和过程: 在Internet上域名和IP是对应的,DNS解析有两种:一种是正向解析,另外一种是反向解析. 正向解析:正向解析就是将域名转换成对应的 IP地址的过程,它应用于在浏览器地址 ...