Loj#2880-「JOISC 2014 Day3」稻草人【CDQ分治,单调栈,二分】
正题
题目链接:https://loj.ac/problem/2880
题目大意
给出平面上的\(n\)个点,然后求有多少个矩形满足
- 左下角和右上角各有一个点
- 矩形之间没有其他点
\(1\leq n\leq 2\times 10^5,1\leq x_i,y_i\leq 10^9,\)保证\(x_i,y_i\)分别不重复出现。
解题思路
按照\(x\)排序,考虑\(CDQ\)分治后左边对右边的影响,对\(y\)从大到小排序然后左右各自维护一个单调栈,左边考虑每个点第一个右上角的点,右边维护一个\(y\)轴递减,\(x\)轴递增的单调栈,然后再右边的单调栈上二分出左边的合法位置即可。
时间复杂度\(O(n\log^2 n)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2e5+10;
struct node{
int x,y;
}p[N];
int n,s[N],t[N];
long long ans;
bool cmp(node x,node y){return x.x<y.x;}
bool cMp(node x,node y){return x.y>y.y;}
void CDQ(int l,int r){
if(l==r)return;
int mid=(l+r)>>1;
CDQ(l,mid);
CDQ(mid+1,r);
sort(p+l,p+mid+1,cMp);
sort(p+mid+1,p+r+1,cMp);
int z=mid+1,top=0,toq=0;
for(int i=l;i<=mid;i++){
while(z<=r&&p[z].y>=p[i].y){
while(top>0&&p[z].x<p[s[top]].x)top--;
s[++top]=z;z++;
}
while(toq>0&&p[i].x>p[t[toq]].x)toq--;
if(toq){
int L=1,R=top;
while(L<=R){
int mid=(L+R)>>1;
if(p[s[mid]].y>p[t[toq]].y)L=mid+1;
else R=mid-1;
}
ans+=top-L+1;
}
else ans+=top;
t[++toq]=i;
}
return;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d%d",&p[i].x,&p[i].y);
sort(p+1,p+1+n,cmp);
CDQ(1,n);
printf("%lld\n",ans);
return 0;
}
Loj#2880-「JOISC 2014 Day3」稻草人【CDQ分治,单调栈,二分】的更多相关文章
- 【BZOJ4237】稻草人 cdq分治+单调栈+二分
[BZOJ4237]稻草人 Description JOI村有一片荒地,上面竖着N个稻草人,村民们每年多次在稻草人们的周围举行祭典. 有一次,JOI村的村长听到了稻草人们的启示,计划在荒地中开垦一片田 ...
- loj2880「JOISC 2014 Day3」稻草人
题目链接:bzoj4237 loj2880 考虑\(cdq\)分治,按\(x\)坐标排序,于是问题变成统计左下角在\([l,mid]\),右上角在\([mid+1,r]\)的矩形数量 我们先考虑固 ...
- 【BZOJ4237】 稻草人 CDQ分治+单调栈
## 题目描述 JOI村有一片荒地,上面竖着N个稻草人,村民们每年多次在稻草人们的周围举行祭典. 有一次,JOI村的村长听到了稻草人们的启示,计划在荒地中开垦一片田地.和启示中的一样,田地需要满足以下 ...
- bzoj4237: 稻草人 cdq分治 单调栈
目录 题目链接 题解 代码 题目链接 bzoj4237: 稻草人 题解 暴力统计是n^2的 考虑统计一段区间对另一端的贡献 对于y值cdq分治,降调一维 对于当前两个分治区间统计上面那部分对下面那部分 ...
- [LOJ#2878]. 「JOISC 2014 Day2」邮戳拉力赛[括号序列dp]
题意 题目链接 分析 如果走到了下行车站就一定会在前面的某个车站走回上行车站,可以看成是一对括号. 我们要求的就是 类似 代价最小的括号序列匹配问题,定义 f(i,j) 表示到 i 有 j 个左括号没 ...
- LOJ#2882. 「JOISC 2014 Day4」两个人的星座(计算几何)
题面 传送门 题解 我们发现如果两个三角形相离,那么这两个三角形一定存在两条公切线 那么我们可以\(O(n^2)\)枚举其中一条公切线,然后可以暴力\(O(n^3)\)计算 怎么优化呢?我们可以枚举一 ...
- LOJ #2877. 「JOISC 2014 Day2」交朋友 并查集+BFS
这种图论问题都挺考验小思维的. 首先,我们把从 $x$ 连出去两条边的都合并了. 然后再去合并从 $x$ 连出去一条原有边与一条新边的情况. 第一种情况直接枚举就行,第二种情况来一个多源 bfs 即可 ...
- LOJ #2876. 「JOISC 2014 Day2」水壶 BFS+最小生成树+倍增LCA
非常好的一道图论问题. 显然,我们要求城市间的最小生成树,然后查询路径最大值. 然后我们有一个非常神的处理方法:进行多源 BFS,处理出每一个城市的管辖范围. 显然,如果两个城市的管辖范围没有交集的话 ...
- bzoj 4237 稻草人 - CDQ分治 - 单调栈
题目传送门 传送点I 传送点II 题目大意 平面上有$n$个点.问存在多少个矩形使得只有左下角和右上角有点. 考虑枚举左下角这个点.然后看一下是个什么情况: 嗯对,是个单调栈.但不可能暴力去求每个点右 ...
随机推荐
- GitLabRunner命令
启动命令 gitlab-runner --debug <command> #调试模式排查错误特别有用. gitlab-runner <command> --help #获取帮助 ...
- docker部署Redis6-0-6
下载redis.conf配置 下载地址: http://download.redis.io/redis-stable/redis.conf 拉取docker镜像 docker pull redis:6 ...
- docker 镜像配置
Ubuntu14.04.Debian7Wheezy 对于使用 upstart 的系统而言,编辑 /etc/default/docker 文件,在其中的 DOCKER_OPTS 中配置加速器地址: DO ...
- Oracle基本用法(一)
一.简介 数据库:Oracle数据库的概念和其他数据库不一样,这里的数据库是一个操作系统只有一个库,可以看做Oracle就是一个大的数据库. 实例:一个Oracle实例有一系列的后台进程和内存结构组成 ...
- 关于struts中Ognl和iterator配合再次理解
Person.jsp (struts.xml中省略) package com.mzy.entity; public class Person { private String name; privat ...
- [leetcode]1109. 航班预订统计(击败100%用户算法-差分数组的详解)
执行用时2ms,击败100%用户 内存消耗52.1MB,击败91%用户 这也是我第一次用差分数组,之前从来没有碰到过,利用差分数组就是利用了差分数组在某一区间内同时加减情况,只会改变最左边和最右边+1 ...
- 跨平台APP推荐收藏
时间:2019-04-11 整理:pangYuaner 标题:十大跨平台优秀软件 地址:https://www.cnblogs.com/the-king-of-cnblogs/p/3154758.ht ...
- springboot系列总结(二)---springboot的常用注解
上一篇文章我们简单讲了一下@SpringBootApplication这个注解,申明让spring boot自动给程序进行必要的配置,他是一个组合注解,包含了@ComponentScan.@Confi ...
- Linux下Oracle新建用户并且将已有的数据dmp文件导入到新建的用户下的操作流程
Oracle新建用户并且将已有的数据dmp文件导入到新建的用户下的操作流程 1.切换到oracle用户下 su - oracle 2.登录sqlplus sqlplus /nolog 3.使用sysd ...
- 16 bit 的灰度图如何显示
16 bit 的灰度图如何在QT中显示 用Mat构造的 16 bit 灰度图 无法直接显示,需要转换成 8 bit 的灰度图在QT中显示, 使用OpenCV自带的最大最小值归一法, cv::norma ...