摘要:针对ViT现状,分析ViT尚存问题和相对应的解决方案,和相关论文idea汇总。

本文分享自华为云社区《【ViT】目前Vision Transformer遇到的问题和克服方法的相关论文汇总》,作者:苏道 。

首先来看ViT始祖级论文:

An image is worth 16x16 words: Transformers for image recognition at scale

论文地址:https://arxiv.org/abs/2010.11929

他使用全Transformer结构,将图像区域划分为一个个小方块作为Patch作为输入。左图是ViT的总体架构,右边是Transformer Encoder中每个Block的外形。我们可以看到,他基本就是原始Transformer的结构,除了他把norm放在前面,有文章表明norm放在前面更加容易训练一点。

使用Transformer可以在每一层都得到图片的全局信息,但是他也不是十全十美的,他有以下的这些缺点:

1、数据需求量大: Self-Attention归纳偏置能力较CNN弱。归纳偏置怎么说呢,就是模型对没遇到的数据做的一些假设,CNN具有空间不变性的假设,所以他可以用一个权重去滑窗处理整个特征图,而RNN具有时间不变性的假设。但是Self-Attetnion没有这些假设,所以他需要更多的数据去自动学习到这些假设,但是这样有一个好处就是可能学到的假设会更灵活一些。

那针对这个问题,我们可以使用一个CNN网络作为Teacher网络,添加蒸馏损失去帮助他学习。

Patch Embedding本质是一个卷积核与滑动步长都为Patch size的大卷积和,想Vit为16的卷积核,那肯定是不够稳定的,所以后来的一些研究会使用几个卷积与池化相结合或者干脆前几个block是残差块的方式来代替。

2、计算量大:计算复杂度与token的平方相关,如果输入特征图为56*56的特征图,那么会涉及3000+长宽的矩阵运算,计算量很大,同时在原始Transformer计算过程中token数以及hidden size保持不变,所以后来的研究者采用了几个方法是解决计算量大的问题。参考resnet结构使用金字塔的结构,越高层的token数量越少;使用局部窗口sa,分别考虑特征图的一部分做sa,再想办法把这些局部信息进行交互;使用卷积来代替fc,以减少参数;在生成Q,K,V过程中,对K,V的特征图或者是token做池化,减少计算复杂度。

3、堆叠层数数量受限:存在过度平滑问题,不同的Block之间的相似性随着模型的加深而增加;不同token之间的相似性随着随着模型的加深而增加。解决方法主要是增大hidden size,不过这个方法参数增加量也会很大;在注意力图softmex前后,在head维度进行线性变换以增加信息交互,增加注意力图的多样性;在深层dropout增大以增加特征的多样性;或者增加相似度惩罚损失项。

4、模型本身无法编码位置:那就需要各种各样的位置编码,以下列出了一些位置编码,有固定的与可学习的,有绝对的和相对的,还有利用卷积的特性使用卷积去作为位置编码的。

具体可见下表

上述改进点相关论文大家可以查下表:

点击关注,第一时间了解华为云新鲜技术~

带你读Paper丨分析ViT尚存问题和相对应的解决方案的更多相关文章

  1. 读paper笔记[Learning to rank]

    读paper笔记[Learning to rank] by Jiawang 选读paper: [1] Ranking by calibrated AdaBoost, R. Busa-Fekete, B ...

  2. 分享两个网址,一个是使用mssql自带的跟踪工具和分析工具

    http://www.cnblogs.com/Fooo/archive/2013/02/19/2916789.html 使用mssql自带的跟踪工具和分析工具 http://blog.csdn.net ...

  3. 少啰嗦!一分钟带你读懂Java的NIO和经典IO的区别

    1.引言 很多初涉网络编程的程序员,在研究Java NIO(即异步IO)和经典IO(也就是常说的阻塞式IO)的API时,很快就会发现一个问题:我什么时候应该使用经典IO,什么时候应该使用NIO? 在本 ...

  4. 读《PMI 分析手册》

    目录 读<PMI 分析手册> 官方 PMI 基本概况 官方制造业 PMI 官方非制造业 PMI 综合 PMI 产出指数 PMI 分析框架 PMI 与经济周期 官方 PMI 分析 参考研报 ...

  5. 一文带你读懂什么是vxlan网络

    一个执着于技术的公众号 一.背景 随着云计算.虚拟化相关技术的发展,传统网络无法满足大规模.灵活性要求高的云数据中心的要求,于是便有了overlay网络的概念.overlay网络中被广泛应用的就是vx ...

  6. 实战 | 一文带你读懂Nginx反向代理

    一个执着于技术的公众号 前言 在前面的章节中,我们已经学习了nginx基础知识: 给小白的 Nginx 10分钟入门指南 Nginx编译安装及常用命令 完全卸载nginx的详细步骤 Nginx 配置文 ...

  7. 一篇文章带您读懂List集合(源码分析)

    今天要分享的Java集合是List,主要是针对它的常见实现类ArrayList进行讲解 内容目录 什么是List核心方法源码剖析1.文档注释2.构造方法3.add()3.remove()如何提升Arr ...

  8. 一篇文章带您读懂Map集合(源码分析)

    今天要分享的Java集合是Map,主要是针对它的常见实现类HashMap进行讲解(jdk1.8) 什么是Map核心方法源码剖析1.文档注释2.成员变量3.构造方法4.put()5.get() 什么是M ...

  9. 带你读AI论文丨用于目标检测的高斯检测框与ProbIoU

    摘要:本文解读了<Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection&g ...

随机推荐

  1. 传统JIT和java9新特性AOT理解

    java慢的原因 1.  除了少量基本类型用栈存储外,所有对象都使用堆存储.堆的性能低于栈. 2.  很多强制类型转换(cast)或加查,耗用内存大.java运行时对类型检测,如果类型不正确会抛出Cl ...

  2. Go: LeetCode简单题,简单做(sort.Search)

    前言 正值端午佳节,LeetCode也很懂.这两天都是简单题,早点做完去包粽子. 故事从一道简单题说起 第一个错误的版本 简单题 你是产品经理,目前正在带领一个团队开发新的产品.不幸的是,你的产品的最 ...

  3. 详解 Apache SkyWalking 跨进程传播协议

    简介 SkyWalking 跨进程传播协议是用于上下文的传播,本文介绍的版本是3.0,也被称为为sw8协议. Header项 Header应该是上下文传播的最低要求. Header名称:sw8. He ...

  4. Ansible基础使用

    原文转自:https://www.cnblogs.com/itzgr/p/10233932.html作者:木二 目录 一 Ansible命令用法 1.1 免密钥 1.2 Ad-Hoc基础命令 1.3 ...

  5. 接口自动化-python+requests+pytest+csv+yaml

    本套代码和逻辑 是本人的劳动成果,如果有转载需要标注, 非常适合公司做项目的同学!!!小白也可以学哦! 1.项目目录  2.公共方法的封装 2.1如果不用配置文件 可以使用这个方法进行封装--但是有一 ...

  6. Linux centos7 mysql 的安装配置

    2021-07-21 1. 创建用户 # 创建用户useradd mysql# 修改密码 passwd mysql 2. 下载 wget 网址 3. 解压 # 创建安装文件夹mkdir app# 解压 ...

  7. Qt5完美解决 界面显示中文乱码

    最近在学习Qt,可是一直头疼于中文乱码问题,上网搜了一下,很多都是Qt4中使用如下方法: QTextCodec *codec = QTextCodec::codecForName("gbk& ...

  8. CountDownLatch能不能在多个线程上添加await?

    在CountDownLatch类的使用过程中,发现了一个很奇怪的现象: CountDownLatch countDownLatch = new CountDownLatch(2); Runnable ...

  9. set类型数据的操作指令

    集合无序,无下标. 1. 也可以在集合上继续添加元素. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

  10. Python习题集(九)

    每天一习题,提升Python不是问题!!有更简洁的写法请评论告知我! https://www.cnblogs.com/poloyy/category/1676599.html 题目 已知一个数列:1. ...