《集体智慧编程学习笔记》——Chapter2:提供推荐
知识点:
1. 协作型过滤——Collaboraive Filtering
通常的做法是对一群人进行搜索,并从中找出与我们品味相近的一小群人,算法会对这些人的偏好进行考察,并将它们组合起来构造出一个经过排名的推荐列表
2.搜索偏好——Collecting Preferences
3.寻找相近的用户——Finding Similar Users
3.1 通过相似度评价值来寻找相近的用户
3.2 相似度评价值体系:欧几里得距离(Euclidean Distance ),皮尔逊相关度(Pearson Collelation)曼哈顿距离和Jaccard系数等
代码实现:
1 # !/usr/bin/local/python3
2 # -*- coding utf-8 -*-
3 from math import sqrt
4
5 # prepare data
6 critics = {'Lisa Rose':{'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,
7 'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You,Me and Dupree': 2.5,
8 'The Night Listener': 3.0},
9 'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5, 'Just My Luck': 1.5,
10 'Superman Returns': 5.0, 'The Night Listener': 3.0, 'You,Me and Dupree': 3.5},
11 'Michale Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0, 'Superman Returns': 3.5,
12 'The Night Listener': 4.0},
13 'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, 'The Night Listener': 4.5,
14 'Superman Returns': 4.0,'You,Me and Dupree': 2.5},
15 'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 'Just My Luck': 2.0,
16 'Superman Returns': 3.0, 'The Night Listener': 3.0,'You,Me and Dupree': 2.0},
17 'Jack Mattews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 5.0, 'The Night Listener': '3.0',
18 'Superman Returns': 5.0, 'You,Me and Dupree': 3.5},
19 'Toby': {'Snakes on a Plane': 4.5, 'You,Me and Dupree': 1.0, 'Superman Returns': 4.0}}
20
21
22 # 测试数据
23 #data =critics['Lisa Rose']['Lady in the Water']
24 #print(data)
25
26 # 返回一个有关P1和P2的基于欧几里得距离的相似度评价
27 def sim_distance(prefs, p1, p2):
28 # 得到共同评价的电影列表
29 si = {}
30 for item in prefs[p1]:
31 if item in prefs[p2]:
32 si[item] = 1
33 # 如果两人没有共同之处,则返回0
34 if len(si) ==0: return 0
35 # 计算所有差值的的平方和
36 sum_of_squares = sum([pow(prefs[p1][item]-prefs[p2][item], 2) for item in prefs[p1]
37 if item in prefs[p2]])
38 # 表示偏好越相近,返回的值越大,(避免被零整除的错误,当返回为1表示两人具有一样的偏好)
39 return 1/(1+sqrt(sum_of_squares))
40
41
42 # 返回p1和p2的皮尔逊相关系数
43 def sim_pearson(prefs, p1, p2):
44 si={}
45 for item in prefs[p1]:
46 if item in prefs[p2]:
47 si[item] = 1
48
49 n = len(si)
50
51 if n == 0: return 1
52 # 求所有偏好之和
53 sum1 = sum([prefs[p1][it] for it in si])
54 sum2 = sum([prefs[p2][it] for it in si])
55
56 # 求偏好平方和
57 sum1Sq = sum([pow(prefs[p1][it], 2) for it in si])
58 sum2Sq = sum([pow(prefs[p2][it], 2) for it in si])
59
60 # 求两人偏好乘积之和
61 pSum = sum([prefs[p1][it] * prefs[p2][it] for it in si])
62
63 # 计算皮尔逊评价值
64 num = pSum - (sum1*sum2/n)
65 den = sqrt((sum1Sq-pow(sum1, 2)/n)*(sum2Sq-pow(sum2, 2)/n))
66 if den == 0: return 0
67 # 返回值介于-1和1之间,值为1则表示两个人对每一样物品均有着完全一致的评价
68 r = num/den
69 return r
70
71
72 # 从反映偏好的字典中返回最为匹配者
73 # 返回结果的个数和相似度函数均为可选参数
74 def topMatches(prefs, person, n=5, similarity=sim_pearson):
75 scores = [(similarity(prefs, person, other), other) for other in prefs if other != person]
76
77 # 对表进行排序,评价值最高的排在最前面
78 scores.sort()
79 scores.reverse()
80 return scores[0:n]
81
82
83 # 利用所有他人评价值的加权平均,为某人提供建议
84 def getRecommendations(prefs, person, similarity=sim_pearson):
85 totals = {}
86 simSum = {}
87 for other in prefs:
88 # 不和自己作比较
89 if other == person: continue
90 # 获取两人之间的相似度
91 sim = similarity(prefs, person, other)
92
93 # 忽略评价值小于零或者为零的情况
94 if sim <= 0: continue
95 for item in prefs[other]:
96 # 只对自己未看过的电影进行评价
97 if item not in prefs[person] or prefs[person][item] == 0:
98 # 相似度*评价值
99 totals.setdefault(item, 0)
100 totals[item] += sim * float(prefs[other][item])
101 # 相似度之和(多人评价对于特定电影的相似度之和)
102 simSum.setdefault(item, 0)
103 simSum[item] += sim
104
105 # 建立一个归一化的列表
106 rankings = [(total/simSum[item], item) for item, total in totals.items()]
107 print(simSum)
108 # 返回经过排序的列表
109 rankings.sort()
110 rankings.reverse()
111 return rankings
112
113
114 # 将人名和物品进行对调
115 def transforPrefs(prefs):
116 result = {}
117 for person in prefs:
118 for item in prefs[person]:
119 result.setdefault(item,{})
120 result[item][person] = prefs[person][item]
121 return result
总结:
1.相似性度量方法的选择问题:
1.1 当采用Pearson方法进行评价时,它修正了‘夸大分值’的情况
1.2 当采用Euclidean Distance方法进行评价时,适用于存在一定共性的数据之间
2.基于用户过滤和基于物品过滤的选择:
2.1 基于用户过滤方法更容易实现,而且无需额外步骤,更适用于规模较小的变化非常频繁的内存数据集
2.2 基于物品过滤明显比基于用户的过滤更快,不过在维护物品相似度表有额外的开销,更适用于稀疏数据集
《集体智慧编程学习笔记》——Chapter2:提供推荐的更多相关文章
- 并发编程学习笔记(4)----jdk5中提供的原子类及Lock使用及原理
(1)jdk中原子类的使用: jdk5中提供了很多原子类,它会使变量的操作变成原子性的. 原子性:原子性指的是一个操作是不可中断的,即使是在多个线程一起操作的情况下,一个操作一旦开始,就不会被其他线程 ...
- 转 网络编程学习笔记一:Socket编程
题外话 前几天和朋友聊天,朋友问我怎么最近不写博客了,一个是因为最近在忙着公司使用的一些控件的开发,浏览器兼容性搞死人:但主要是因为这段时间一直在看html5的东西,看到web socket时觉得很有 ...
- 多线程编程学习笔记——async和await(一)
接上文 多线程编程学习笔记——任务并行库(一) 接上文 多线程编程学习笔记——任务并行库(二) 接上文 多线程编程学习笔记——任务并行库(三) 接上文 多线程编程学习笔记——任务并行库(四) 通过前面 ...
- Python 集体智慧编程PDF
集体智慧编程PDF 1.图书思维导图http://www.pythoner.com/183.html p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12. ...
- 多线程编程学习笔记——使用异步IO(一)
接上文 多线程编程学习笔记——使用并发集合(一) 接上文 多线程编程学习笔记——使用并发集合(二) 接上文 多线程编程学习笔记——使用并发集合(三) 假设以下场景,如果在客户端运行程序,最的事情之一是 ...
- 多线程编程学习笔记——使用异步IO
接上文 多线程编程学习笔记——使用并发集合(一) 接上文 多线程编程学习笔记——使用并发集合(二) 接上文 多线程编程学习笔记——使用并发集合(三) 假设以下场景,如果在客户端运行程序,最的事情之一是 ...
- Java并发编程学习笔记
Java编程思想,并发编程学习笔记. 一.基本的线程机制 1.定义任务:Runnable接口 线程可以驱动任务,因此需要一种描述任务的方式,这可以由Runnable接口来提供.要想定义任务,只需实现R ...
- 并发编程学习笔记(15)----Executor框架的使用
Executor执行已提交的 Runnable 任务的对象.此接口提供一种将任务提交与每个任务将如何运行的机制(包括线程使用的细节.调度等)分离开来的方法.通常使用 Executor 而不是显式地创建 ...
- 并发编程学习笔记(13)----ConcurrentLinkedQueue(非阻塞队列)和BlockingQueue(阻塞队列)原理
· 在并发编程中,我们有时候会需要使用到线程安全的队列,而在Java中如果我们需要实现队列可以有两种方式,一种是阻塞式队列.另一种是非阻塞式的队列,阻塞式队列采用锁来实现,而非阻塞式队列则是采用cas ...
随机推荐
- jsoup的Node类
一.简介 Node类直接继承Object,实现了Cloneable接口,它是一个抽象类,类声明:public abstract class Node extends Object implements ...
- MVVMLight学习笔记(二)---MVVMLight框架初探
一.MVVM分层概述 MVVM中,各个部分的职责如下: Model:负责数据实体的结构处理,与ViewModel进行交互: View:负责界面显示,与ViewModel进行数据和命令的交互: View ...
- Java File常见用法
一.构造方法 File(File parent, String child) 从父抽象路径名和子路径名字符串创建新的 File实例. File(String pathname) 通过将给定的路径名字符 ...
- a、b、n为正整数且a>b,证明:若n|(a^n-b^n),则n|(a^n-b^n)/(a-b).
- 图解最长回文子串「Manacher 算法」,基础思路感性上的解析
问题描述: 给你一个字符串 s,找到 s 中最长的回文子串. 链接:https://leetcode-cn.com/problems/longest-palindromic-substring 「Ma ...
- Mysql常用基础命令操作
常见操作命令:1.连接Mysql (客户端工具NaviCat.phpMyAdmin.MySQL-Front)格式: mysql -h 主机地址 -u用户名 -p用户密码(1)连接到本机上的MYSQL. ...
- Python - 面向对象编程 - 实战(6)
需求 设计一个培训机构管理系统,有总部.分校,有学员.老师.员工,实现具体如下需求: 有多个课程,课程要有定价 有多个班级,班级跟课程有关联 有多个学生,学生报名班级,交这个班级对应的课程的费用 有多 ...
- stream流思想应用
1.计算集合中某字段数值和 subTotal = subTotal+ complainCountResult.stream().filter(childSource->childSource.g ...
- Input 只能输入数字,数字和字母等的正则表达式
JS只能输入数字,数字和字母等的正则表达式 1.文本框只能输入数字代码(小数点也不能输入) <input onkeyup="this.value=this.value.replace( ...
- 【MyBatis】几种批量插入效率的比较
批处理数据主要有三种方式: 反复执行单条插入语句 foreach 拼接 sql 批处理 一.前期准备 基于Spring Boot + Mysql,同时为了省略get/set,使用了lombok,详见p ...