Recommenders with TensorRT
Recommenders with TensorRT
推荐系统用于向社交网络、媒体内容消费和电子商务平台的用户提供产品或媒体推荐。基于MLP的神经协作滤波器(NCF)推荐器使用一组完全连接或矩阵乘法层来生成推荐。 TensorRT推荐人示例的一些示例包括:
- Movie Recommendation Using Neural Collaborative Filter (NCF)
- Movie Recommendation Using MPS (Multi-Process Service)
- “Hello World” For Multilayer Perceptron (MLP)
3.1. Movie Recommendation Using Neural Collaborative Filter (NCF)
这个示例sampleMovieLens是一个端到端的示例,它导入一个经过训练的TensorFlow模型,并为每个用户预测最高收视率的电影。这个例子演示了一个简单的电影推荐系统,它使用了基于多层感知器(MLP)的神经协作滤波器(NCF)推荐器。
What does this sample do?
具体地说,这个示例演示了如何为TensorRT可以加速的MovieLens数据集生成权重。
Where is this sample located?
此示例保存在GitHub: sampleMovieLens存储库中的samples/opensource/sampleMovieLens目录下。如果使用Debian或RPM包,则示例位于
/usr/src/tensorrt/samples/sampleMovieLens。如果使用tar或zip包,则示例位于<extracted_path>/samples/sampleMovieLens。
How do I get started?
有关入门的更多信息,请参见使用C++示例开始。有关此示例的详细信息,请参阅GitHub: sampleMovieLens/README.md文件获取有关此示例如何工作的详细信息、示例代码以及有关如何运行和验证其输出的分步说明。
这个示例sampleMovieLensMPS是一个端到端的示例,它导入经过训练的TensorFlow模型,并使用MPS(多进程服务)为每个用户预测最高评级的电影。
What does this sample do?
MPS允许多个CUDA进程共享一个GPU上下文。使用MPS,可以同时调度来自不同进程的多个重叠内核执行和memcpy操作,以实现最大利用率。对于资源利用率低的小型网络,例如主要由一系列小型MLP组成的网络,这对于提高并行性尤其有效。
此示例在功能上与使用神经协作过滤器(NCF)的电影推荐相同,但经过修改以支持多个进程中的并发执行。具体地说,这个示例演示了如何为TensorRT可以加速的MovieLens数据集生成权重。
注:目前,sampleMovieLensMPS只支持Linux x86-64(包括Ubuntu和RedHat)桌面用户。
Where is
this sample located?
此示例保存在GitHub: sampleMovieLensMPS存储库中的
samples/opensource/sampleMovieLensMPS目录下。如果使用Debian或RPM包,则示例位于/usr/src/tensorrt/samples/sampleMovieLensMPS。如果使用tar或zip包,则示例位于<extracted_path>/samples/sampleMovieLensMPS。
How do I
get started?
有关入门的更多信息,请参见使用C++示例开始。有关此示例的详细信息,请参阅GitHub: sampleMovieLensMPS/README.md文件获取有关此示例如何工作的详细信息、示例代码以及有关如何运行和验证其输出的分步说明。
3.2. Movie
Recommendation Using MPS (Multi-Process Service)
这个示例sampleMovieLensMPS是一个端到端的示例,它导入经过训练的TensorFlow模型,并使用MPS(多进程服务)为每个用户预测最高评级的电影。
What does
this sample do?
MPS允许多个CUDA进程共享一个GPU上下文。使用MPS,可以同时调度来自不同进程的多个重叠内核执行和memcpy操作,以实现最大利用率。对于资源利用率低的小型网络,例如主要由一系列小型MLP组成的网络,这对于提高并行性尤其有效。 此示例在功能上与使用神经协作过滤器(NCF)的电影推荐相同,但经过修改以支持多个进程中的并发执行。具体地说,这个示例演示了如何为TensorRT可以加速的MovieLens数据集生成权重。
注:目前,sampleMovieLensMPS只支持Linux x86-64(包括Ubuntu和RedHat)桌面用户。
Where is this sample located?
This
sample is maintained under thesamples/opensource/sampleMovieLensMPS
directory in the GitHub: sampleMovieLensMPS
repository. If using the Debian or RPM package, the sample is located at
/usr/src/tensorrt/samples/sampleMovieLensMPS. If using
the tar or zip package, the sample is at<extracted_path>/samples/sampleMovieLensMPS.
How do I
get started?
有关入门的更多信息,请参见使用C++示例开始。有关此示例的详细信息,请参阅GitHub:sampleMovieLensMPS/README.md文件获取有关此示例如何工作的详细信息、示例代码以及有关如何运行和验证其输出的分步说明。
3.3. “Hello World” For
Multilayer Perceptron (MLP)
这个示例sampleMLP是一个简单的hello
world示例,演示了如何创建一个触发多层感知器(MLP)优化器的网络。生成的MLP优化器可以加速TensorRT。
Where is
this sample located?
此示例保存在GitHub:sampleMLP存储库中的samples/opensource/sampleMLP目录下。如果使用Debian或RPM包,则示例位于/usr/src/tensorrt/samples/sampleMLP。如果使用tar或zip包,则示例位于<extracted_path>/samplesMLP。
How do I
get started?
有关入门的更多信息,请参见使用C++示例开始。有关此示例的详细信息,请参阅GitHub: sampleMLP/README.md文件获取有关此示例如何工作的详细信息、示例代码以及有关如何运行和验证其输出的分步说明。
Recommenders with TensorRT的更多相关文章
- TensorRT 介绍
引用:https://arleyzhang.github.io/articles/7f4b25ce/ 1 简介 TensorRT是一个高性能的深度学习推理(Inference)优化器,可以为深度学习应 ...
- 基于TensorRT的BERT实时自然语言理解(上)
基于TensorRT的BERT实时自然语言理解(上) 大规模语言模型(LSLMs)如BERT.GPT-2和XL-Net为许多自然语言理解(NLU)任务带来了最先进的精准飞跃.自2018年10月发布以来 ...
- Eclipse增强代码提示插件Code Recommenders安装,顺便说说Eclipse插件安装方法
1.为什么用Code Recommenders 在用过Intelij Idea后,发现它的自动代码提示非常智能,可以敲关键字就能提示,但是因为公司用的是Eclipse, 所以想找有没有这个插件能增强代 ...
- TensorRT学习总结
TensorRT是什么 建议先看看这篇https://zhuanlan.zhihu.com/p/35657027 深度学习 训练 部署 平常自学深度学习的时候关注的更多是训练的部分,即得到一个模型.而 ...
- TensorRT&Sample&Python[yolov3_onnx]
本文是基于TensorRT 5.0.2基础上,关于其内部的yolov3_onnx例子的分析和介绍. 本例子展示一个完整的ONNX的pipline,在tensorrt 5.0的ONNX-TensorRT ...
- TensorRT&Sample&Python[uff_custom_plugin]
本文是基于TensorRT 5.0.2基础上,关于其内部的uff_custom_plugin例子的分析和介绍. 本例子展示如何使用cpp基于tensorrt python绑定和UFF解析器进行编写pl ...
- TensorRT&Sample&Python[fc_plugin_caffe_mnist]
本文是基于TensorRT 5.0.2基础上,关于其内部的fc_plugin_caffe_mnist例子的分析和介绍. 本例子相较于前面例子的不同在于,其还包含cpp代码,且此时依赖项还挺多.该例子展 ...
- TensorRT&Sample&Python[network_api_pytorch_mnist]
本文是基于TensorRT 5.0.2基础上,关于其内部的network_api_pytorch_mnist例子的分析和介绍. 本例子直接基于pytorch进行训练,然后直接导出权重值为字典,此时并未 ...
- TensorRT&Sample&Python[end_to_end_tensorflow_mnist]
本文是基于TensorRT 5.0.2基础上,关于其内部的end_to_end_tensorflow_mnist例子的分析和介绍. 1 引言 假设当前路径为: TensorRT-5.0.2.6/sam ...
随机推荐
- c++ 第三方库收集
1.boost 这个使用的人多不多说了 2.pthread windows下的posix线程实现 3.libcurl 一个有名的开源网络爬虫库 阿里旺旺中使用到了 4.libeay32 OpenSSL ...
- Python socket编程(阻塞) --基于SocketServer
SocketServer模块是Python对socket常规通信的一个经过封装的模块,使用简单,基于面向对象的设计模式,但功能有限,可用于快速开发. Tips: 默认端口:6767 默认本地ip:12 ...
- 【点分治】2019 首尔 icpc Gene Tree
题目 链接:https://ac.nowcoder.com/acm/contest/15644/B来源:牛客网 A gene tree is a tree showing the evolution ...
- java的继承和组合
继承和组合是java中非常常用的两种创建新类型的方法,两者都能提高代码的复用率. 继承主要是想让子类继承父类的基本特性:组合技术通常用于想在新类中使用现有类的功能,而非它的接口.两者的分别是" ...
- 多线程-4.wait() notify() notifyAll() 生产者消费者模型
1.wait()方法 该方法继承于Object类.在调用obj.wait()方法后,当前线程会失去obj的锁.待其他线程调用obj.notify()或notifyAll()方法后进入锁等待池,争抢到锁 ...
- web自动化框架—BasePage 类的简单封装
优秀的框架都有属于自己的思想,在搭建web自动化测试框架时,我们通常都遵循 PO(Page Object)思想. 简单理解就是我们会把每个页面看成一个对象,一切皆对象,面向对象编码,这样会让我们更好的 ...
- [敏杰开发]知识路书——图形化文献管理大师 Beta版发布喽!!!
[敏杰开发]知识路书--图形化文献管理大师 Beta版发布喽!!! 一.总览 项目名称:知识路书 发布形式:网页应用 发布地址:http://roadmap.imcoming.top 二.运行环境与使 ...
- Tomcat&Http协议-授课
1 企业开发简介 1.1 JavaEE规范 JavaEE规范是J2EE规范的新名称,早期被称为J2EE规范,其全称是Java 2 Platform Enterprise Edition,它是由SUN公 ...
- Linux信号与golang中的捕获处理
什么是信号 在计算机科学中,信号是Unix.类Unix以及其他POSIX兼容的操作系统中进程间通讯的一种有限制的方式.它是一种异步的通知机制,用来提醒进程一个事件已经发生. 当一个信号发送给一个进程, ...
- [bug] JavaScript:Uncaught SyntaxError: missing ) after argument list
function拼写错误