Recommenders with TensorRT
Recommenders with TensorRT
推荐系统用于向社交网络、媒体内容消费和电子商务平台的用户提供产品或媒体推荐。基于MLP的神经协作滤波器(NCF)推荐器使用一组完全连接或矩阵乘法层来生成推荐。 TensorRT推荐人示例的一些示例包括:
- Movie Recommendation Using Neural Collaborative Filter (NCF)
- Movie Recommendation Using MPS (Multi-Process Service)
- “Hello World” For Multilayer Perceptron (MLP)
3.1. Movie Recommendation Using Neural Collaborative Filter (NCF)
这个示例sampleMovieLens是一个端到端的示例,它导入一个经过训练的TensorFlow模型,并为每个用户预测最高收视率的电影。这个例子演示了一个简单的电影推荐系统,它使用了基于多层感知器(MLP)的神经协作滤波器(NCF)推荐器。
What does this sample do?
具体地说,这个示例演示了如何为TensorRT可以加速的MovieLens数据集生成权重。
Where is this sample located?
此示例保存在GitHub: sampleMovieLens存储库中的samples/opensource/sampleMovieLens目录下。如果使用Debian或RPM包,则示例位于
/usr/src/tensorrt/samples/sampleMovieLens。如果使用tar或zip包,则示例位于<extracted_path>/samples/sampleMovieLens。
How do I get started?
有关入门的更多信息,请参见使用C++示例开始。有关此示例的详细信息,请参阅GitHub: sampleMovieLens/README.md文件获取有关此示例如何工作的详细信息、示例代码以及有关如何运行和验证其输出的分步说明。
这个示例sampleMovieLensMPS是一个端到端的示例,它导入经过训练的TensorFlow模型,并使用MPS(多进程服务)为每个用户预测最高评级的电影。
What does this sample do?
MPS允许多个CUDA进程共享一个GPU上下文。使用MPS,可以同时调度来自不同进程的多个重叠内核执行和memcpy操作,以实现最大利用率。对于资源利用率低的小型网络,例如主要由一系列小型MLP组成的网络,这对于提高并行性尤其有效。
此示例在功能上与使用神经协作过滤器(NCF)的电影推荐相同,但经过修改以支持多个进程中的并发执行。具体地说,这个示例演示了如何为TensorRT可以加速的MovieLens数据集生成权重。
注:目前,sampleMovieLensMPS只支持Linux x86-64(包括Ubuntu和RedHat)桌面用户。
Where is
this sample located?
此示例保存在GitHub: sampleMovieLensMPS存储库中的
samples/opensource/sampleMovieLensMPS目录下。如果使用Debian或RPM包,则示例位于/usr/src/tensorrt/samples/sampleMovieLensMPS。如果使用tar或zip包,则示例位于<extracted_path>/samples/sampleMovieLensMPS。
How do I
get started?
有关入门的更多信息,请参见使用C++示例开始。有关此示例的详细信息,请参阅GitHub: sampleMovieLensMPS/README.md文件获取有关此示例如何工作的详细信息、示例代码以及有关如何运行和验证其输出的分步说明。
3.2. Movie
Recommendation Using MPS (Multi-Process Service)
这个示例sampleMovieLensMPS是一个端到端的示例,它导入经过训练的TensorFlow模型,并使用MPS(多进程服务)为每个用户预测最高评级的电影。
What does
this sample do?
MPS允许多个CUDA进程共享一个GPU上下文。使用MPS,可以同时调度来自不同进程的多个重叠内核执行和memcpy操作,以实现最大利用率。对于资源利用率低的小型网络,例如主要由一系列小型MLP组成的网络,这对于提高并行性尤其有效。 此示例在功能上与使用神经协作过滤器(NCF)的电影推荐相同,但经过修改以支持多个进程中的并发执行。具体地说,这个示例演示了如何为TensorRT可以加速的MovieLens数据集生成权重。
注:目前,sampleMovieLensMPS只支持Linux x86-64(包括Ubuntu和RedHat)桌面用户。
Where is this sample located?
This
sample is maintained under thesamples/opensource/sampleMovieLensMPS
directory in the GitHub: sampleMovieLensMPS
repository. If using the Debian or RPM package, the sample is located at
/usr/src/tensorrt/samples/sampleMovieLensMPS. If using
the tar or zip package, the sample is at<extracted_path>/samples/sampleMovieLensMPS.
How do I
get started?
有关入门的更多信息,请参见使用C++示例开始。有关此示例的详细信息,请参阅GitHub:sampleMovieLensMPS/README.md文件获取有关此示例如何工作的详细信息、示例代码以及有关如何运行和验证其输出的分步说明。
3.3. “Hello World” For
Multilayer Perceptron (MLP)
这个示例sampleMLP是一个简单的hello
world示例,演示了如何创建一个触发多层感知器(MLP)优化器的网络。生成的MLP优化器可以加速TensorRT。
Where is
this sample located?
此示例保存在GitHub:sampleMLP存储库中的samples/opensource/sampleMLP目录下。如果使用Debian或RPM包,则示例位于/usr/src/tensorrt/samples/sampleMLP。如果使用tar或zip包,则示例位于<extracted_path>/samplesMLP。
How do I
get started?
有关入门的更多信息,请参见使用C++示例开始。有关此示例的详细信息,请参阅GitHub: sampleMLP/README.md文件获取有关此示例如何工作的详细信息、示例代码以及有关如何运行和验证其输出的分步说明。
Recommenders with TensorRT的更多相关文章
- TensorRT 介绍
引用:https://arleyzhang.github.io/articles/7f4b25ce/ 1 简介 TensorRT是一个高性能的深度学习推理(Inference)优化器,可以为深度学习应 ...
- 基于TensorRT的BERT实时自然语言理解(上)
基于TensorRT的BERT实时自然语言理解(上) 大规模语言模型(LSLMs)如BERT.GPT-2和XL-Net为许多自然语言理解(NLU)任务带来了最先进的精准飞跃.自2018年10月发布以来 ...
- Eclipse增强代码提示插件Code Recommenders安装,顺便说说Eclipse插件安装方法
1.为什么用Code Recommenders 在用过Intelij Idea后,发现它的自动代码提示非常智能,可以敲关键字就能提示,但是因为公司用的是Eclipse, 所以想找有没有这个插件能增强代 ...
- TensorRT学习总结
TensorRT是什么 建议先看看这篇https://zhuanlan.zhihu.com/p/35657027 深度学习 训练 部署 平常自学深度学习的时候关注的更多是训练的部分,即得到一个模型.而 ...
- TensorRT&Sample&Python[yolov3_onnx]
本文是基于TensorRT 5.0.2基础上,关于其内部的yolov3_onnx例子的分析和介绍. 本例子展示一个完整的ONNX的pipline,在tensorrt 5.0的ONNX-TensorRT ...
- TensorRT&Sample&Python[uff_custom_plugin]
本文是基于TensorRT 5.0.2基础上,关于其内部的uff_custom_plugin例子的分析和介绍. 本例子展示如何使用cpp基于tensorrt python绑定和UFF解析器进行编写pl ...
- TensorRT&Sample&Python[fc_plugin_caffe_mnist]
本文是基于TensorRT 5.0.2基础上,关于其内部的fc_plugin_caffe_mnist例子的分析和介绍. 本例子相较于前面例子的不同在于,其还包含cpp代码,且此时依赖项还挺多.该例子展 ...
- TensorRT&Sample&Python[network_api_pytorch_mnist]
本文是基于TensorRT 5.0.2基础上,关于其内部的network_api_pytorch_mnist例子的分析和介绍. 本例子直接基于pytorch进行训练,然后直接导出权重值为字典,此时并未 ...
- TensorRT&Sample&Python[end_to_end_tensorflow_mnist]
本文是基于TensorRT 5.0.2基础上,关于其内部的end_to_end_tensorflow_mnist例子的分析和介绍. 1 引言 假设当前路径为: TensorRT-5.0.2.6/sam ...
随机推荐
- 关于 C/C++ 函数调用约定
关于 C/C++ 函数调用约定,大多数时候并不会影响程序逻辑,但遇到跨语言编程时,了解一下还是有好处的. VC 中默认调用是 __cdecl 方式,Windows API 使用 __stdcall 调 ...
- 截取字符串长度,超出部分用省略号代替 PHP
function subText($text, $length){ if (mb_strlen($text, 'utf8') > $length) { return mb_substr($tex ...
- 【微信小程序】--bindtap参数传递,配合wx.previewImage实现多张缩略图预览
本文为原创随笔,纯属个人理解.如有错误,欢迎指出. 如需转载请注明出处 在微信小程序中预览图片分为 a.预览本地相册中的图片. b.预览某个wxml中的多张图片. 分析:实质其实是一样的.都是给wx. ...
- ConcurrentHashMap源码解读二
接下来就讲解put里面的三个方法,分别是 1.数组初始化方法initTable() 2.线程协助扩容方法helpTransfer() 3.计数方法addCount() 首先是数组初始化,再将源码之前, ...
- vue 访问页面时报错 Failed to compile
这个是因为node-sass没安装好,所以要重新安装 windows下运行命令:npm install node-sass --registry=https://registry.npm.taobao ...
- XCTF.MISC 新手篇
目录 泪目 1.this_is_flag 2.pdf 3.如来十三掌 4.give_you_flag 5.坚持60s 6.gif 7.掀桌子 8.ext3 9.stegano 10.SimpleRAR ...
- FHE-Toolkit 安装
什么是FHE-Toolkit? FHE-Toolkit-linux是用于Linux的IBM全同态加密工具包, 该工具包是一个基于Linux的Docker容器,可演示对加密数据的计算而无需解密, 该工具 ...
- 【Azure Redis 缓存】Azure Cache for Redis服务中,除开放端口6379,6380外,对13000,13001,15000,15001 为什么也是开放的呢?
问题描述 在使用安全检测工具对Azure Redis服务端口进行扫描时,发现Redis对外开放了13001, 13000,15000,15001端口.非常不理解的是,在门户上只开放了6379,6380 ...
- 使用JSONassert进行JSON对象对比
在日常工作中,会接到用户提出一张订单,修改后需要记录每次修改的信息,然后需要查看修改前后的差异信息这样的需求.要实现这样的功能方式有很多.下面介绍下JSONassert的简单使用,也方便自己后续使 ...
- [bug] ERROR: Can't get master address from ZooKeeper; znode data == null
排错 访问bigdata111:50070没显示 jps发现hdfs的namenode没启动 查看namenode日志发现9000端口被占用 查找占用端口的进程 杀死进程,或在配置文件中更改端口号 参 ...