【POJ3171】Cleaning Shifts 带权区间最小覆盖
题目大意:给定一个长度为 N 的序列,求带权区间最小覆盖。
题解:设 \(dp[i]\) 表示从左端点到 i 的最小权值是多少,则状态转移为:\(dp[e[i].ed]=min\{dp[j],j\in[e[i].st-1,e[i].ed-1] \}\),初始化 \(dp[st-1]=0\) 即可。因此,这里用线段树来维护区间最小值即可。不过这道题需要注意的点有很多,首先开始区间的下标从 0 开始,因此需要注意避免下标为负数的情况,我采用了所有坐标加 1 的写法,结尾要注意所给区间排序之后末尾可能出现大于给定的结尾的情况,线段树需要维护两者较大的值。其次是状态转移时,线段树中的 modify 函数并不是直接修改值,而是需要比较一下大小再决定是否修改。(在这里WA了好长时间QAQ)
代码如下
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=1e5;
const int inf=0x3f3f3f3f;
inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
struct node{
#define ls t[k].lc
#define rs t[k].rc
int lc,rc,mi;
}t[maxn<<1];
int tot=1;
int n,st,ed,ans,dp[maxn],l_b,r_b;
struct seg{
int st,ed,w;
bool operator<(const seg& y)const{return this->ed<y.ed;}
}e[10010];
inline void pushup(int k){t[k].mi=min(t[ls].mi,t[rs].mi);}
void build(int k,int l,int r){
if(l==r){t[k].mi=dp[l];return;}
int mid=l+r>>1;
ls=++tot,build(ls,l,mid);
rs=++tot,build(rs,mid+1,r);
pushup(k);
}
void modify(int k,int l,int r,int pos,int val){
if(l==r){t[k].mi=min(t[k].mi,val);return;}
int mid=l+r>>1;
if(pos<=mid)modify(ls,l,mid,pos,val);
else modify(rs,mid+1,r,pos,val);
pushup(k);
}
int query(int k,int l,int r,int x,int y){
if(l==x&&r==y)return t[k].mi;
int mid=l+r>>1;
if(y<=mid)return query(ls,l,mid,x,y);
else if(x>mid)return query(rs,mid+1,r,x,y);
else return min(query(ls,l,mid,x,mid),query(rs,mid+1,r,mid+1,y));
}
void read_and_parse(){
memset(dp,0x3f,sizeof(dp));
n=read(),st=read()+1,ed=read()+1;//偏移量
for(int i=1;i<=n;i++){
scanf("%d%d%d",&e[i].st,&e[i].ed,&e[i].w);
++e[i].st,++e[i].ed;
}
sort(e+1,e+n+1);
r_b=max(ed,e[n].ed),l_b=st-1;
dp[st-1]=0;
build(1,l_b,r_b);
}
void solve(){
for(int i=1;i<=n;i++){
int mi=query(1,l_b,r_b,e[i].st-1,e[i].ed-1);
if(mi==inf)continue;
dp[e[i].ed]=mi+e[i].w;
modify(1,l_b,r_b,e[i].ed,dp[e[i].ed]);
}
ans=inf;
for(int i=ed;i<=r_b;i++)ans=min(ans,dp[i]);
if(ans==inf)puts("-1");
else printf("%d\n",ans);
}
int main(){
read_and_parse();
solve();
return 0;
}
【POJ3171】Cleaning Shifts 带权区间最小覆盖的更多相关文章
- POJ3171 Cleaning Shifts DP,区间覆盖最值
题目大意.N个区间覆盖[T1,T2]及相应的代价S,求从区间M到E的所有覆盖的最小代价是多少. (1 <= N <= 10,000).(0 <= M <= E <= 86 ...
- BZOJ2298: [HAOI2011]problem a(带权区间覆盖DP)
Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1747 Solved: 876[Submit][Status][Discuss] Descripti ...
- 洛谷P2439 [SDOI2005]阶梯教室设备利用(带权区间覆盖)
题目背景 我们现有许多演讲要在阶梯教室中举行.每一个演讲都可以用唯一的起始和终止时间来确定,如果两个演讲时间有部分或全部重复,那么它们是无法同时在阶级教室中举行的.现在我们想要尽最大可能的利用这个教室 ...
- poj3171 Cleaning Shifts【线段树(单点修改区间查询)】【DP】
Cleaning Shifts Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4422 Accepted: 1482 D ...
- poj3171 Cleaning Shifts[DP]
https://vjudge.net/problem/POJ-3171.(有价值的区间全覆盖问题) (lyd例题)朴素DP很好想,$f[i]$表示将右端点从小到大排序后从$L$(要求覆盖的大区间)到第 ...
- [USACO2005][POJ3171]Cleaning Shifts(DP+线段树优化)
题目:http://poj.org/problem?id=3171 题意:给你n个区间[a,b],每个区间都有一个费用c,要你用最小的费用覆盖区间[M,E] 分析:经典的区间覆盖问题,百度可以搜到这个 ...
- POJ 2376 Cleaning Shifts (贪心,区间覆盖)
题意:给定1-m的区间,然后给定n个小区间,用最少的小区间去覆盖1-m的区间,覆盖不了,输出-1. 析:一看就知道是贪心算法的区间覆盖,主要贪心策略是把左端点排序,如果左端点大于1无解,然后, 忽略小 ...
- poj3171 Cleaning Shifts
传送门 题目大意 有一个大区间和n个小区间,每个小区间都有一个代价,求最少付出多少代价可以使得小区间完全覆盖大区间. 分析为了方便起见我们先将s变为2,其它的位置都对应更改以便后期处理.我们考虑以t1 ...
- POJ2376 Cleaning Shifts
题意 POJ2376 Cleaning Shifts 0x50「动态规划」例题 http://bailian.openjudge.cn/practice/2376 总时间限制: 1000ms 内存限制 ...
随机推荐
- 2017-2018-2 20155315《网络对抗技术》Exp8 :Web基础
实验目的 理解HTML,学会Web前端.Web后端和数据库编程及SQL注入.XSS攻击测试 教程 实验内容 操作程序规律 运行脚本或可执行文件 查看配置文件 出错找日志 Web前端HTML 能正常安装 ...
- Exp6
实验内容 一.公开渠道信息搜集 本次信息搜集在metasploit平台上实现(使用msfconsole命令进入) 1.通过DNS和IP挖掘信息 (1)使用whois进行域名信息查询 使用原因:目前互联 ...
- 20155331 《网络对抗》 Exp6 信息搜集与漏洞扫描
20155331 <网络对抗> Exp6 信息搜集与漏洞扫描 实验问题回答 哪些组织负责DNS,IP的管理 答:美国政府授权ICANN统一管理全球根服务器,负责全球的域名根服务器.DNS和 ...
- 【php增删改查实例】第五节 - easyUI的基本使用
1. 列表组件 datagrid 1.1 创建一个grid.html <html> <head> <meta charset="utf-8" /> ...
- TMS320VC5509的MCBSP配置成SPI模式通信
1. 首先是把MCBSP的配置 其次是时钟停止模式的配置,关闭大同小异 SPI有4中模式,怎么根据上面的寄存器选择哪种模式?下面展示了其中两种,CLKXP=1的时候有另外两种,暂时不整出来了 2. 代 ...
- [转]申瓯 JSY2000-06 程控电话交换机呼叫转移设置
说明:若申瓯程控电话交换机分机有事不在位置上或遇忙分机正忙时为使某些重要来话不丢失,可设置将呼入本机的电话转移至其他分机及公网固定电话或手机.电话交换机使用了本功能不管分机用户在什么地方都能接听到办公 ...
- Nginx+IIS分布式部署和负载均衡
1.IIS中部署2个网站 创建2个网站,端口分别为9001.9002 2.下载Nginx 可以进入Nginx官网进行下载,官网地址: http://nginx.org/,需要下载windows版的 3 ...
- muduo网络库学习笔记(三)TimerQueue定时器队列
目录 muduo网络库学习笔记(三)TimerQueue定时器队列 Linux中的时间函数 timerfd简单使用介绍 timerfd示例 muduo中对timerfd的封装 TimerQueue的结 ...
- MongoDB 安装教程
前言: MongoDB是一个基于分布式文件存储的数据库.由C++旨在为WEB应用提供可扩展的高性能数据存储解决方案. 官方网站:https://www.mongodb.com/ 本次教程只针对wind ...
- PAT甲题题解-1038. Recover the Smallest Number (30)-排序/贪心,自定义cmp函数的强大啊!!!
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6789138.html特别不喜欢那些随便转载别人的原创文章又不给 ...