【uoj228】 基础数据结构练习题
http://uoj.ac/problem/228 (题目链接)
题意
给出一个序列,维护区间加法,区间开根,区间求和
Solution
线段树。考虑区间开根怎么做。当区间的最大值与最小值相等时,我们直接对整个区间开根。最坏情况下,一次开根的复杂度最坏是${O(n)}$的,然而每次开根可以迅速拉近两个数之间的大小差距,最坏复杂度的开根不会超过${5}$次。
但是考虑这样一种情况:${\sqrt{x+1}=\sqrt{x}+1}$,如果序列长成这样:${65535,65536,65535,65536······}$,那么对它开根${3}$次,每次都是最坏情况下的复杂度,最后变成了${3,4,3,4······}$,如果此时我们对它进行区间加法,又加回${65535,65536,65535,65536······}$,不断循环,复杂度就炸裂了。所以当出现这种情况时,我们也对它进行区间开根。
细节
LL
代码
// uoj228
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<cmath>
#include<queue>
#include<map>
#define LL long long
#define inf 1ll<<30
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=100010;
int n,m,a[maxn];
struct segtree {int l,r;LL mn,mx,tag,s;}tr[maxn<<2]; void update(int k) {
tr[k].mn=min(tr[k<<1].mn,tr[k<<1|1].mn)+tr[k].tag;
tr[k].mx=max(tr[k<<1].mx,tr[k<<1|1].mx)+tr[k].tag;
tr[k].s=tr[k<<1].s+tr[k<<1|1].s+tr[k].tag*(tr[k].r-tr[k].l+1);
}
void build(int k,int s,int t) {
tr[k].l=s;tr[k].r=t;
int mid=(s+t)>>1;
if (s==t) {tr[k].mn=tr[k].mx=tr[k].s=a[s];return;}
build(k<<1,s,mid);
build(k<<1|1,mid+1,t);
update(k);
}
void add(int k,int s,int t,int val) {
int l=tr[k].l,r=tr[k].r,mid=(l+r)>>1;
if (l==s && r==t) {tr[k].s+=(LL)val*(tr[k].r-tr[k].l+1);tr[k].mn+=val,tr[k].mx+=val;tr[k].tag+=val;return;}
if (t<=mid) add(k<<1,s,t,val);
else if (s>mid) add(k<<1|1,s,t,val);
else add(k<<1,s,mid,val),add(k<<1|1,mid+1,t,val);
update(k);
}
void Sqrt(int k,int s,int t,LL tag) {
int l=tr[k].l,r=tr[k].r,mid=(l+r)>>1;
if (l==s && r==t) {
if ((tr[k].mx==tr[k].mn) || (tr[k].mn+1==tr[k].mx && floor(sqrt(tr[k].mn+tag))+1==floor(sqrt(tr[k].mx+tag)))) {
LL tmp=floor(sqrt(tr[k].mn+tag))-tr[k].mn-tag;
tr[k].tag+=tmp;tr[k].mn+=tmp;tr[k].mx+=tmp;
tr[k].s+=(tr[k].r-tr[k].l+1)*tmp;
return;
}
}
if (t<=mid) Sqrt(k<<1,s,t,tag+tr[k].tag);
else if (s>mid) Sqrt(k<<1|1,s,t,tag+tr[k].tag);
else Sqrt(k<<1,s,mid,tag+tr[k].tag),Sqrt(k<<1|1,mid+1,t,tag+tr[k].tag);
update(k);
}
LL query(int k,int s,int t) {
int l=tr[k].l,r=tr[k].r,mid=(l+r)>>1;
if (l==s && r==t) return tr[k].s;
if (t<=mid) return query(k<<1,s,t)+tr[k].tag*(t-s+1);
else if (s>mid) return query(k<<1|1,s,t)+tr[k].tag*(t-s+1);
else return query(k<<1,s,mid)+query(k<<1|1,mid+1,t)+tr[k].tag*(t-s+1);
} int main() {
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
build(1,1,n);
for (int op,l,r,val,i=1;i<=m;i++) {
scanf("%d%d%d",&op,&l,&r);
if (op==1) scanf("%d",&val),add(1,l,r,val);
if (op==2) Sqrt(1,l,r,0);
if (op==3) printf("%lld\n",query(1,l,r));
}
return 0;
}
【uoj228】 基础数据结构练习题的更多相关文章
- uoj228 基础数据结构练习题
趁别人题解没有放出来赶快写一篇 整数序列,操作 区间加 区间变成sqrt(下取整) 区间和 考虑一下对于每个区间里所有sqrt不同的段操作,那么可以在O(段数logn)一次的时间内完成sqrt操作.考 ...
- [UOJ228] 基础数据结构练习题 - 线段树
考虑到一个数开根号 \(loglog\) 次后就会变成1,设某个Node的势能为 \(loglog(maxv-minv)\) ,那么一次根号操作会使得势能下降 \(1\) ,一次加操作最多增加 \(l ...
- 【UOJ228】基础数据结构练习题(线段树)
[UOJ228]基础数据结构练习题(线段树) 题面 UOJ 题解 我们来看看怎么开根? 如果区间所有值都相等怎么办? 显然可以直接开根 如果\(max-sqrt(max)=min-sqrt(min)\ ...
- 【UOJ#228】基础数据结构练习题 线段树
#228. 基础数据结构练习题 题目链接:http://uoj.ac/problem/228 Solution 这题由于有区间+操作,所以和花神还是不一样的. 花神那道题,我们可以考虑每个数最多开根几 ...
- uoj #228. 基础数据结构练习题 线段树
#228. 基础数据结构练习题 统计 描述 提交 自定义测试 sylvia 是一个热爱学习的女孩子,今天她想要学习数据结构技巧. 在看了一些博客学了一些姿势后,她想要找一些数据结构题来练练手.于是她的 ...
- 【线段树】uoj#228. 基础数据结构练习题
get到了标记永久化 sylvia 是一个热爱学习的女孩子,今天她想要学习数据结构技巧. 在看了一些博客学了一些姿势后,她想要找一些数据结构题来练练手.于是她的好朋友九条可怜酱给她出了一道题. 给出一 ...
- UOJ228:基础数据结构练习题——题解
http://uoj.ac/problem/228 参考:https://www.cnblogs.com/ljh2000-jump/p/6357583.html 考虑当整个区间的最大值开方==最小值开 ...
- uoj228:基础数据结构练习题
题意:http://uoj.ac/problem/228 sol :线段树开根操作 对于节点x,可以在max[x]-min[x]<=1时直接做,转化为区间减或区间覆盖 #include< ...
- UOJ228 简单数据结构练习题
Description 传送门 维护一个数列, 有以下操作: 对[l,r]同时加上x 把[l,r]开根后下取整. 查询[l,r]之和 n,m \(\leq\)$ 100000, $\(a_i,x \l ...
随机推荐
- BroadcastReceiver广播相关 - 转
BroadcastReceiver广播接收者用于接收系统或其他程序(包括自己程序)发送的广播. 一.注册广播 在android中,我们如果想接收到广播信息,必须自定义我们的广播接收者.要写一个类来继承 ...
- go语言之行--简介与环境搭建
一.Go简介 Go 是一个开源的编程语言,它能让构造简单.可靠且高效的软件变得容易. Go是从2007年末由Robert Griesemer, Rob Pike, Ken Thompson主持开发,后 ...
- [arm学习]makefile学习总结
makefile不仅仅是一个命令的集合体,其中有一些规则是需要理解掌握的. 首先,了解makefile的规则: //-----------格式---------- 目标 : 依赖1,依赖2 (TAP键 ...
- 洛咕 P3704 [SDOI2017]数字表格
大力推式子 现根据套路枚举\(\gcd(i,j)\) \(ans=\Pi_{x=1}^nfib[x]^{\sum_{i=1}^{n/x}\sum_{j=1}^{n/x}[\gcd(i,j)=1]}\) ...
- JAVA 文件读取写入后 md5值不变的方法
假如我们想把某文件读入 StringBuffer 并写入新文件,新文件md5值需要保持不变(写入新文件后保证和源文件一模一样), 我们就需要在操作 StringBuffer 时附加换行符: Strin ...
- 修改 input[type="radio"] 和 input[type="checkbox"] 的默认样式
表单中,经常会使用到单选按钮和复选框,但是,input[type="radio"] 和 input[type="checkbox"] 的默认样式在不同的浏览器或 ...
- django请求的生命周期
1. 概述 首先我们知道HTTP请求及服务端响应中传输的所有数据都是字符串. 在Django中,当我们访问一个的url时,会通过路由匹配进入相应的html网页中. Django的请求生命周期是指当用户 ...
- JavaWeb项目学习教程(1) 准备阶段
写在最前面 为什么要写一个这样的教程?作为一个软件工程专业的学生,上课老师讲得飞快,几乎都是在课后自己消化,我知道学习记录的重要性.我自己本身还有很多很多基础的东西都没有学会,比较博客园的人有很大的差 ...
- OpenCV调整彩色图像的饱和度和亮度
问题 如何调整彩色图像的饱和度和亮度 解决思路 详细步骤: 将RGB图像值归一化到[0, 1] 然后使用函数cvtColor进行色彩空间的转换 接下来可以根据处理灰度图像对比度增强伽马变换或者线性变换 ...
- springboot 异步调用Async使用方法
引言: 在Java应用中,绝大多数情况下都是通过同步的方式来实现交互处理的:但是在处理与第三方系统交互的时候,容易造成响应迟缓的情况,之前大部分都是使用多线程来完成此类任务,其实,在spring 3. ...