Dylans loves tree

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1915    Accepted Submission(s): 492

Problem Description
Dylans is given a tree with N nodes.

All nodes have a value A[i].Nodes on tree is numbered by 1∼N.

Then he is given Q questions like that:

①0 x y:change node x′s value to y

②1 x y:For all the value in the path from x to y,do they all appear even times?

For each ② question,it guarantees that there is at most one value that appears odd times on the path.

1≤N,Q≤100000, the value A[i]∈N and A[i]≤100000

 
Input
In the first line there is a test number T.
(T≤3 and there is at most one testcase that N>1000)

For each testcase:

In the first line there are two numbers N and Q.

Then in the next N−1 lines there are pairs of (X,Y) that stand for a road from x to y.

Then in the next line there are N numbers A1..AN stand for value.

In the next Q lines there are three numbers(opt,x,y).

 
Output
For each question ② in each testcase,if the value all appear even times output "-1",otherwise output the value that appears odd times.
 
Sample Input
1
3 2
1 2
2 3
1 1 1
1 1 2
1 1 3
 
Sample Output
-1
1

Hint

If you want to hack someone,N and Q in your testdata must smaller than 10000,and you shouldn't print any space in each end of the line.

 

思路:
一道非常简单的题。。要求u-v之前出现次数为奇数的数字,如果没找到就输出-1,找到就输出这个数字。
题目保证了出现为奇数次的数字的个数不超过1,那么直接对u-v异或就好了,最后剩下的如果是0有两种可能:
1.没有出现次数为奇数的数字 。 2.出现次数为奇数的数字为0;
我们只要将输入的数字全部+1就可以避免这种情况了
最后当输出的值为0时没有出现次数为奇数的数字,输出-1,不为0的话直接输出这个数字就好了。
 
实现代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define mid int m = (l + r) >> 1
const int M = 2e5+;
struct node{
int to,next;
}e[M];
int sum[M<<],son[M],fa[M],head[M],siz[M],top[M],dep[M],tid[M],rk[M],a[M];
int cnt1,cnt,n;
void add(int u,int v){
e[++cnt1].to = v;e[cnt1].next = head[u];head[u] = cnt1;
e[++cnt1].to = u;e[cnt1].next = head[v];head[v] = cnt1;
} void dfs1(int u,int faz,int deep){
dep[u] = deep;
fa[u] = faz;
siz[u] = ;
for(int i = head[u];i;i=e[i].next){
int v = e[i].to;
if(v != fa[u]){
dfs1(v,u,deep+);
siz[u] += siz[v];
if(son[u] == -||siz[v] > siz[son[u]])
son[u] = v;
}
}
} void dfs2(int u,int t){
top[u] = t;
tid[u] = cnt;
rk[cnt] = u;
cnt++;
if(son[u] == -) return;
dfs2(son[u],t);
for(int i = head[u];i;i = e[i].next){
int v = e[i].to;
if(v != son[u]&&v != fa[u])
dfs2(v,v);
}
} void pushup(int rt){
sum[rt] = sum[rt<<]^sum[rt<<|];
} void build(int l,int r,int rt){
if(l == r){
sum[rt] = a[rk[l]];
return ;
}
mid;
build(lson);
build(rson);
pushup(rt);
} void update(int p,int c,int l,int r,int rt){
if(l == r){
sum[rt] = c;
return ;
}
mid;
if(p <= m) update(p,c,lson);
else update(p,c,rson);
pushup(rt);
} int query(int L,int R,int l,int r,int rt){
if(L <= l&&R >= r){
return sum[rt];
}
mid;
int ret = ;
if(L <= m) ret^=query(L,R,lson);
if(R > m) ret^=query(L,R,rson);
return ret;
} int ask(int x,int y){
int sum = ;
int fx = top[x],fy = top[y];
while(fx != fy){
if(dep[fx] < dep[fy]) swap(x,y),swap(fx,fy);
sum ^= query(tid[fx],tid[x],,n,);
x = fa[fx];fx = top[x];
}
if(dep[x] < dep[y]) swap(x,y);
sum^=query(tid[y],tid[x],,n,);
//cout<<sum<<endl;
return sum;
} void init()
{
memset(son,-,sizeof(son));
for(int i = ; i <= *n;i ++){
e[i].to = ;e[i].next = ;head[i] = ;
}
}
int main()
{
int t,u,v,x,y,op,q;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&q);
cnt = ; cnt1 = ;
init();
for(int i = ; i < n-;i ++){
scanf("%d%d",&u,&v);
add(u,v);
}
for(int i = ;i <= n;i ++)
scanf("%d",&x),a[i]=x+;
dfs1(,,); dfs2(,); build(,n,);
while(q--){
scanf("%d",&op);
if(op==){
scanf("%d%d",&x,&y);
//cout<<ask(x,y)<<endl;
if(ask(x,y)!=) printf("%d\n",ask(x,y)-);
else printf("-1\n");
}
else{
scanf("%d%d",&x,&y);
update(tid[x],y+,,n,);
}
}
}
return ;
}

hdu 5274 Dylans loves tree (树链剖分 + 线段树 异或)的更多相关文章

  1. Hdu 5274 Dylans loves tree (树链剖分模板)

    Hdu 5274 Dylans loves tree (树链剖分模板) 题目传送门 #include <queue> #include <cmath> #include < ...

  2. hdu 5274 Dylans loves tree(LCA + 线段树)

    Dylans loves tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  3. hdu 5274 Dylans loves tree

    Dylans loves tree http://acm.hdu.edu.cn/showproblem.php?pid=5274 Time Limit: 2000/1000 MS (Java/Othe ...

  4. Aizu 2450 Do use segment tree 树链剖分+线段树

    Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...

  5. 【POJ3237】Tree(树链剖分+线段树)

    Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...

  6. HDU 2460 Network(双连通+树链剖分+线段树)

    HDU 2460 Network 题目链接 题意:给定一个无向图,问每次增加一条边,问个图中还剩多少桥 思路:先双连通缩点,然后形成一棵树,每次增加一条边,相当于询问这两点路径上有多少条边,这个用树链 ...

  7. POJ3237 Tree 树链剖分 线段树

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3237 题意概括 Description 给你由N个结点组成的树.树的节点被编号为1到N,边被编号为1 ...

  8. 【CF725G】Messages on a Tree 树链剖分+线段树

    [CF725G]Messages on a Tree 题意:给你一棵n+1个节点的树,0号节点是树根,在编号为1到n的节点上各有一只跳蚤,0号节点是跳蚤国王.现在一些跳蚤要给跳蚤国王发信息.具体的信息 ...

  9. Spoj Query on a tree SPOJ - QTREE(树链剖分+线段树)

    You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...

  10. Water Tree CodeForces 343D 树链剖分+线段树

    Water Tree CodeForces 343D 树链剖分+线段树 题意 给定一棵n个n-1条边的树,起初所有节点权值为0. 然后m个操作, 1 x:把x为根的子树的点的权值修改为1: 2 x:把 ...

随机推荐

  1. Linux线程的信号量同步

    信号量和互斥锁(mutex)的区别:互斥锁只允许一个线程进入临界区,而信号量允许多个线程同时进入临界区. 不多做解释,要使用信号量同步,需要包含头文件semaphore.h. 主要用到的函数: int ...

  2. 现有工程中集成Cordova

    cocoapods引入cordova源码 1.依赖Cordova和wk插件 pod 'Cordova' pod 'cordova-plugin-wkwebview-engine' 建立Cordova支 ...

  3. Luogu P1120 小木棍 [数据加强版]

    看了题目心中只有一个字——搜索!!! 但是很显然,朴素的搜索(回溯)绝壁超时. 剪枝&优化(要搞很多,要不然过不了) 1:从小到大搜索它们的因数,这样找到就exit. 2:将数据从大到小排序, ...

  4. python 23 种 设计模式

    频率 所属类型 模式名称 模式 简单定义 5 创建型 Singleton 单件 保证一个类只有一个实例,并提供一个访问它的全局访问点. 4 创建型 Abstract Factory 抽象工厂 提供一个 ...

  5. cocos2d-x学习记录1——图片显示

    这篇算是cocos2d-x入门篇,显示一张图片即可. 观察工程中HelloWorld的结构,包含AppDelegate和HelloWorldScene两个类文件,AppDelegate中包含基本的处理 ...

  6. idea 中全局查找不到文件 (两shift),单页搜索不到关键字的原因

    全局查找不到文件是因为把要找的目录的本级或者上级设置为了额外的,所以自然找不到 而单页搜索不到内容是因为设置了words关键字,这个要全部都输入完才能找到(也就是整个关键字进行匹配,匹配到了整体才会查 ...

  7. [CF1083F]The Fair Nut and Amusing Xor[差分+同余分类+根号分治+分块]

    题意 给定两个长度为 \(n\) 的序列 \(\{a_i\}\) 与 \(\{b_i\}\),你需要求出它们的相似度.,我们定义这两个序列的相似度为将其中一个序列转化为另一个序列所需的最小操作次数.一 ...

  8. docker之compose 编排项目

    一.docker-compose 的介绍 docker-compose是一种容器编排工具,可以将多个docker容器关联部署.通过yaml文件,可以描述应用的架构,如使用什么镜像.数据卷.网络.绑定服 ...

  9. Istio全景监控与拓扑

    根据Istio官方报告,Observe(可观察性)为其重要特性.Istio提供非侵入式的自动监控,记录应用内所有的服务. 我们知道在Istio的架构中,Mixer是管理和收集遥测信息的组件.每一次当请 ...

  10. 无前趋的顶点优先的拓扑排序方法(JAVA)(转载http://128kj.iteye.com/blog/1706968)

    无前趋的顶点优先的拓扑排序方法 该方法的每一步总是输出当前无前趋(即人度为零)的顶点,其抽象算法可描述为:     NonPreFirstTopSort(G){//优先输出无前趋的顶点       w ...