Ng第二课:单变量线性回归(Linear Regression with One Variable)
二、单变量线性回归(Linear Regression with One Variable)
2.1 模型表示
2.2 代价函数
2.3 代价函数的直观理解
2.4 梯度下降
2.5 梯度下降的直观理解
2.6 梯度下降的线性回归
2.7 接下来的内容
2.1 模型表示
之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示:

我们将要用来描述这个回归问题的标记如下:
m 代表训练集中实例的数量
x 代表特征/输入变量
y 代表目标变量/输出变量
(x,y) 代表训练集中的实例
(x(i),y(i)) 代表第 i 个观察实例
h 代表学习算法的解决方案或函数也称为假设(hypothesis)

因而,要解决房价预测问题,我们实际上是要将训练集“喂”给我们的学习算法,进而学习得到一个假设 h,然后把我们要预测的房屋的尺寸作为输入变量输入给 h,预测出该房屋的交易价格作为输出变量输出为结果。对于这个房价预测问题,一种可能的表达方式为:
,因为只含有一个特征/输入变量,因此这样的问题叫作单变量线性回归问题。
2.2 代价函数
我们现在要做的便是为我们的模型选择合适的参数(parameters)θ0 和 θ1,在房价问题这个例子中便是直线的斜率和在 y 轴上的截距。
我们选择的参数决定了我们得到的直线相对于我们的训练集的准确程度,模型所预测的值与训练集中实际值之间的差距(下图中蓝线所指部分)就是建模误差(modeling error)。

我们的目标便是选择出可以使得建模误差的平方和能够最小的模型参数。 即使得代价函数
我们绘制一个等高线图,三个坐标分别为 θ0 和 θ1 和 J(θ0,θ1):

则可以看出在三维空间中存在一个使得 J(θ0,θ1)最小的点。
2.3 代价函数的直观理解


图1是不考虑θ0、θ1时J(0)为常数,图2是当只考虑θ1时代价函数J(θ1)的情况,图3是θ0、θ1都考虑时J(θ0,θ1)的情况。
代价函数的样子:

图1是固定的θ0、θ1,图2是参数的θ0、θ1
2.4 梯度下降的直观理解
梯度下降算法如下:

梯度下降的原理描述:首先对随机赋初值,减后
值改变再带进去,使得
按梯度下降最快的方向进行,一直迭代下去最终会得到局部最小值,即上式

表示最陡的那个方向,α 是学习率(learning rate)(步长)也就是说每次向下降最快的方向走多远。α过大时,有可能越过最小值,当α过小时,容易造成迭代次数较多收敛速度较慢。
2.5 梯度下降的线性回归
梯度下降算法和线性回归算法比较如图:

对之前的线性回归问题运用梯度下降法,关键在于求出代价函数的导数,即:

j=0 时:
j=1 时:
则算法改写成:

2.6 接下来的内容
在接下来的一组视频中,我会对将用到的线性代数进行一个快速的复习回顾。
通过它们,你可以实现和使用更强大的线性回归模型。事实上,线性代数不仅仅在线性回归中应用广泛,它其中的矩阵和向量将有助于帮助我们实现之后更多的机器学习模型,并在计算上更有效率。正是因为这些矩阵和向量提供了一种有效的方式来组织大量的数据,特别是当我们处理巨大的训练集时。
事实上,为了实现机器学习算法,我们只需要一些非常非常基础的线性代数知识。具体来说,为了帮助你判断是否有需要学习接 下来的一组视频,我会讨论什么是矩阵和向量,谈谈如何加 、减 、乘矩阵和向量,讨论逆 矩阵和转置矩阵的概念。
Ng第二课:单变量线性回归(Linear Regression with One Variable)的更多相关文章
- 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)
二.单变量线性回归(Linear Regression with One Variable) 2.1 模型表示 2.2 代价函数 2.3 代价函数的直观理解 I 2.4 代价函数的直观理解 I ...
- 机器学习 (一) 单变量线性回归 Linear Regression with One Variable
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...
- [Machine Learning] 单变量线性回归(Linear Regression with One Variable) - 线性回归-代价函数-梯度下降法-学习率
单变量线性回归(Linear Regression with One Variable) 什么是线性回归?线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方 ...
- Coursera《machine learning》--(2)单变量线性回归(Linear Regression with One Variable)
本笔记为Coursera在线课程<Machine Learning>中的单变量线性回归章节的笔记. 2.1 模型表示 参考视频: 2 - 1 - Model Representation ...
- 机器学习(二)--------单变量线性回归(Linear Regression with One Variable)
面积与房价 训练集 (Training Set) Size Price 2104 460 852 178 ...... m代表训练集中实例的数量x代表输入变量 ...
- 吴恩达机器学习(二) 单变量线性回归(Linear Regression with one variable)
一.模型表示 1.一些术语 如下图,房价预测.训练集给出了房屋面积和价格,下面介绍一些术语: x:输入变量或输入特征(input variable/features). y:输出变量或目标变量(out ...
- 单变量线性回归(Linear Regression with One Variable)与代价函数
所谓的单变量线性回归问题就是监督学习的一部分. 通过构建数学模型给出一个相对准确的数值,也就是预测模型,通过将数据通过数学模型,衍生至回归问题 通过以下的几个例子,我们来研究单变量线性回归. 1.王阿 ...
- 机器学习第2课:单变量线性回归(Linear Regression with One Variable)
2.1 模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示: 我们将要用来描述这个回归问题的标记如下: m 代表训练集中实 ...
- 机器学习-线性回归算法(单变量)Linear Regression with One Variable
1 线性回归算法 http://www.cnblogs.com/wangxin37/p/8297988.html 回归一词指的是,我们根据之前的数据预测出一个准确的输出值,对于这个例子就是价格,回归= ...
随机推荐
- [z]一个SQL语句分清楚RANK(),DENSE_RANK(),ROW_NUMBER()三个排序的不同
转自:http://blog.csdn.net/s630730701/article/details/51902762 在SCOTT用户下,执行下面SQL; SELECT s.deptno,s.ena ...
- Oracle性能优化2- 依据场景选择技术
1.索引的坏处 索引可以加快查询效率,但是使用不当,会造成插入性能很低 drop table test1 purge; drop table test2 purge; drop table test3 ...
- html标签二
1.没有前后顺序的信息列表<ul> <li></li> <li></li></ul>2.有序列表 <ol> < ...
- python消息队列Queue
实例1:消息队列Queue,不要将文件命名为"queue.py",否则会报异常"ImportError: cannot import name 'Queue'" ...
- 函数调用的四种方式 和 相关的 --- this指向
this:表示被调用函数的上下文对象. arguments:表示函数调用过程中传递的所有参数. 这两个参数都是隐式的函数参数.会静默传递给函数,并且和函数体内显式声明的参数一样可正常访问. argum ...
- bowtie:短序列比对的新工具
bowtie:短序列比对的新工具(转) (2014-11-17 22:15:24) 转载▼ 标签: 转载 原文地址:bowtie:短序列比对的新工具(转)作者:玉琪星兆 Bowtie是一个超级快速 ...
- BZOJ1977或洛谷4180 [BJWC2010]次小生成树
一道LCA+生成树 BZOJ原题链接 洛谷原题链接 细节挺多,我调了半天..累炸.. 回到正题,我们先求出随便一棵最小生成树(设边权和为\(s\)),然后扫描剩下所有边,设扫到的边的两端点为\(x,y ...
- springmvc+mybatis 构建cms+UC浏览器文章功能
最近公司在模拟UC浏览器做一个简单的cms系统,主要针对于企业内部的文章浏览需求,这边考虑用户大多用mobile浏览文章内容,故使用原生的ios和android进行开发,后面也会集成html5. 1. ...
- UI设计教程分享:banner设计
我们都知道在一个网站中,banner图片对于浏览者来说是非常重要的,尤其是电商banner,它的最主要目的是营销,是要让消费者有冲动去购买,这对设计的要求也就更高了.而企业网站也一样,一个合适的ban ...
- UI设计教程分享:PS故障风海报制作教程
1.首先找一张看起来很酷的图(也可以选择自己喜欢的图片): 2. 复制图层,点击添加图层样式,选择混合选项,在高级混合里面的通道选项,有R.G.B三个通道选项,默认是全部勾选的状态,选择其中一个勾 ...