题目传送门

GCD SUM

题目描述

for i=1 to n

for j=1 to n

sum+=gcd(i,j)

给出n求sum. gcd(x,y)表示x,y的最大公约数.

输入输出格式

输入格式:

n

输出格式:

sum

输入输出样例

输入样例#1:

2
输出样例#1:

5

说明

数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000


  分析:

  无聊的出题人出的无聊的数学题。

  这里博主用了一种比较暴力的思想,直接枚举以$1\thicksim n$为$GCD$的数对个数,然后累加得到答案就行了,然后就不难得到公式:

  $ans=\sum^n_{i=1}((\sum^{\lfloor n/i\rfloor}_{j=1} \phi(i)-1)*i+i)$

  Code:

//It is made by HolseLee on 27th Oct 2018
//Luogu.org P2398
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; typedef long long ll;
const ll N=1e5+;
ll n,phi[N],sum[N],q[N],top,ans;
bool vis[N]; void ready()
{
phi[]=;
for(ll i=; i<=n; ++i) {
if( !vis[i] ) phi[q[++top]=i]=i-;
for(ll j=,k; j<=top && (k=q[j]*i)<=n; ++j) {
vis[k]=;
if( i%q[j] ) phi[k]=phi[i]*(q[j]-);
else { phi[k]=phi[i]*q[j]; break; }
}
}
for(ll i=; i<=n; ++i) sum[i]=sum[i-]+phi[i];
} int main()
{
scanf("%lld",&n);
ready(); ll now;
for(ll i=; i<=n; ++i) {
now=n/i;
//cout<<sum[now]<<' '<<i<<'\n';
ans+=sum[now]*i*+i;
}
printf("%lld\n",ans);
return ;
}

                                                                                        

洛谷P2398 GCD SUM [数论,欧拉筛]的更多相关文章

  1. 洛谷P2398 GCD SUM (数学)

    洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...

  2. 洛谷 P2398 GCD SUM || uva11417,uva11426,uva11424,洛谷P1390,洛谷P2257,洛谷P2568

    https://www.luogu.org/problemnew/show/P2398 $原式=\sum_{k=1}^n(k\sum_{i=1}^n\sum_{j=1}^n[(i,j)=k])$ 方法 ...

  3. 洛谷P2398 GCD SUM

    题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum ...

  4. 洛谷 P2398 GCD SUM 题解

    题面 挺有意思的. 设f[i]表示gcd(i,j)=i的个数,g[i]表示k|gcd(i,j)的个数; g[i]=(n/i)*(n/i); g[i]=f[i]+f[2i]+f[3i]+...; 所以f ...

  5. POJ2635(数论+欧拉筛+大数除法)

    题目链接:https://vjudge.net/problem/POJ-2635 题意:给定一个由两个质数积的大数M和一个数L,问大数M的其中较小的质数是否小于L. 题解:因为大数M已经超过long ...

  6. 洛谷UVA12995 Farey Sequence(欧拉函数,线性筛)

    洛谷题目传送门 分数其实就是一个幌子,实际上就是求互质数对的个数(除开一个特例\((1,1)\)).因为保证了\(a<b\),所以我们把要求的东西拆开看,不就是\(\sum_{i=2}^n\ph ...

  7. 洛谷$P1390$ 公约数的和 欧拉函数

    正解:欧拉函数 解题报告: 传送门$QwQ$ 首先显然十分套路地变下形是趴 $\begin{align*}&=\sum_{i=1}^n\sum_{j=1}^n gcd(i,j)\\&= ...

  8. 洛谷P3601签到题(欧拉函数)

    题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...

  9. 洛谷 - P3768 - 简单的数学题 - 欧拉函数 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P3768 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i ...

随机推荐

  1. 【ARC076D/F】Exhausted?

    Description ​ 题目链接 Solution ​ 场上尝试使用优化建图网络流实现,结果T到怀疑人生. ​ 鉴于这是个匹配问题,考虑用贪心做一下. ​ 先退一步,想一下如果每一个人只有\([1 ...

  2. SpringBoot整合Swagger-ui

    SpringBoot整合Swagger-ui 引入依赖 <dependency> <groupId>org.springframework.boot</groupId&g ...

  3. java web 验证码-数字不变形

    controller代码: import java.awt.Color; import java.awt.Font; import java.awt.Graphics2D; import java.a ...

  4. Easyui的DateBox日期格式化

    http://www.cnblogs.com/wintalen/archive/2011/06/10/2077171.html DateBox 日期显示默认的格式为“dd/mm/yyyy”,如果想自定 ...

  5. JavaScript--Dom间接选择器

    一.Dom间接选择器 间接查找的属性 parentNode // 父节点 childNodes // 所有子节点 firstChild // 第一个子节点 lastChild // 最后一个子节点 n ...

  6. Docker应用五:使用Dockerfile部署MongoDB

    在Docker容器中部署MongoDB 不做铺垫,直接开撸: 一.软件准备: docker(已安装) MongoDB-3.2.0.tgz 二.准备配置文件mongo.conf port=27017 d ...

  7. OpenStack 镜像服务 Glance部署(六)

    Glance介绍 创建虚拟机我们需要有glance的支持,因为glance是提供镜像的服务. Glance有两个比较重要的服务: Glance-api:接受云系统镜像的构建.删除.读取请求 Glanc ...

  8. 写一个Windows服务

    做了两个和Windows服务有关的项目了,最开始的时候没做过,不懂,现在明白了许多.需要注意的是,如果不想登录什么的,最后在添加安装程序的那里选择那个字长的右键属性,把启动方式改为local syst ...

  9. ngx_lua_API 指令详解(五)coroutine.create,coroutine.resume,coroutine.yield 等集合指令介绍

    ngx_lua 模块(原理实现) 1.每个worker(工作进程)创建一个Lua VM,worker内所有协程共享VM: 2.将Nginx I/O原语封装后注入 Lua VM,允许Lua代码直接访问: ...

  10. Python 算法实现

    # [程序1] # 题目:有1.2.3.4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少? l=[1,2,3,4] count = 0 for i in range(len(l)): fo ...