洛谷P2398 GCD SUM [数论,欧拉筛]
GCD SUM
题目描述
for i=1 to n
for j=1 to n
sum+=gcd(i,j)
给出n求sum. gcd(x,y)表示x,y的最大公约数.
输入输出格式
输入格式:
n
输出格式:
sum
输入输出样例
2
5
说明
数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000
分析:
无聊的出题人出的无聊的数学题。
这里博主用了一种比较暴力的思想,直接枚举以$1\thicksim n$为$GCD$的数对个数,然后累加得到答案就行了,然后就不难得到公式:
$ans=\sum^n_{i=1}((\sum^{\lfloor n/i\rfloor}_{j=1} \phi(i)-1)*i+i)$
Code:
//It is made by HolseLee on 27th Oct 2018
//Luogu.org P2398
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; typedef long long ll;
const ll N=1e5+;
ll n,phi[N],sum[N],q[N],top,ans;
bool vis[N]; void ready()
{
phi[]=;
for(ll i=; i<=n; ++i) {
if( !vis[i] ) phi[q[++top]=i]=i-;
for(ll j=,k; j<=top && (k=q[j]*i)<=n; ++j) {
vis[k]=;
if( i%q[j] ) phi[k]=phi[i]*(q[j]-);
else { phi[k]=phi[i]*q[j]; break; }
}
}
for(ll i=; i<=n; ++i) sum[i]=sum[i-]+phi[i];
} int main()
{
scanf("%lld",&n);
ready(); ll now;
for(ll i=; i<=n; ++i) {
now=n/i;
//cout<<sum[now]<<' '<<i<<'\n';
ans+=sum[now]*i*+i;
}
printf("%lld\n",ans);
return ;
}
洛谷P2398 GCD SUM [数论,欧拉筛]的更多相关文章
- 洛谷P2398 GCD SUM (数学)
洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...
- 洛谷 P2398 GCD SUM || uva11417,uva11426,uva11424,洛谷P1390,洛谷P2257,洛谷P2568
https://www.luogu.org/problemnew/show/P2398 $原式=\sum_{k=1}^n(k\sum_{i=1}^n\sum_{j=1}^n[(i,j)=k])$ 方法 ...
- 洛谷P2398 GCD SUM
题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum ...
- 洛谷 P2398 GCD SUM 题解
题面 挺有意思的. 设f[i]表示gcd(i,j)=i的个数,g[i]表示k|gcd(i,j)的个数; g[i]=(n/i)*(n/i); g[i]=f[i]+f[2i]+f[3i]+...; 所以f ...
- POJ2635(数论+欧拉筛+大数除法)
题目链接:https://vjudge.net/problem/POJ-2635 题意:给定一个由两个质数积的大数M和一个数L,问大数M的其中较小的质数是否小于L. 题解:因为大数M已经超过long ...
- 洛谷UVA12995 Farey Sequence(欧拉函数,线性筛)
洛谷题目传送门 分数其实就是一个幌子,实际上就是求互质数对的个数(除开一个特例\((1,1)\)).因为保证了\(a<b\),所以我们把要求的东西拆开看,不就是\(\sum_{i=2}^n\ph ...
- 洛谷$P1390$ 公约数的和 欧拉函数
正解:欧拉函数 解题报告: 传送门$QwQ$ 首先显然十分套路地变下形是趴 $\begin{align*}&=\sum_{i=1}^n\sum_{j=1}^n gcd(i,j)\\&= ...
- 洛谷P3601签到题(欧拉函数)
题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...
- 洛谷 - P3768 - 简单的数学题 - 欧拉函数 - 莫比乌斯反演
https://www.luogu.org/problemnew/show/P3768 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i ...
随机推荐
- 【洛谷P2114】起床困难综合征 位运算+贪心
题目大意:给定 N 个操作,每个操作为按位与.或.异或一个固定的数字,现在要求从 0 到 M 中任选一个数字,使得依次经过 N 个操作后的值最大. 题解:位运算有一个重要的性质是:位运算时,无进位产生 ...
- mysql新版本问题
异常错误:Loading class `com.mysql.jdbc.Driver'. This is deprecated. The new driver class is `com.mysql.c ...
- 在kubernetes集群中创建redis主从多实例
分类 > 正文 在kubernetes集群中创建redis主从多实例 redis-slave镜像制作 redis-master镜像制作 创建kube的配置文件yaml 继续使用上次实验环境 ht ...
- saltstack主机管理项目【day39】:主机管理项目开发
项目目标 salt state.apply -h "ubuntu,centos" -g "ubuntu,centos" -f "ubuntu,cent ...
- ajax实现输入用户名异步提示是否可用
<script type="text/javascript"> //页面加载完毕后执行 $(document).ready(function(){ //用户名输入框绑定 ...
- RESTful记录-RESTful介绍
RESTful Web服务是基于REST架构的Web服务.在REST架构一切都是一种资源. RESTful Web服务是轻量级的,高度可扩展性和可维护性,并且非常常用于创建基于API的Web应用程序. ...
- OpenGL ES 2.0 Shader 调试新思路(二): 做一个可用的原型
OpenGL ES 2.0 Shader 调试新思路(二): 做一个可用的原型 目录 背景介绍 请参考前文OpenGL ES 2.0 Shader 调试新思路(一): 改变提问方式 优化 ledCha ...
- spring+spring mvc+JdbcTemplate 入门小例子
大家使用这个入门时候 最好能够去 搜一下 spring mvc 的 原理,我放一张图到这里,自己琢磨下,后面去学习就容易了 给个链接 (网上一把,千万不能懒) https://www.cnblo ...
- [整理]解析Json需要设置Mime
IIS6.0 1.打开IIS添加Mime项 关联扩展名:*.json内容类型(MIME):application/x-javascript 2.添加映射: 位置在IIS对应站点右键属性:”主目录”-” ...
- 新.Net架构必备工具列表
N多年前微软官网曾发了.Net下必备的十种工具,N多年过去了,世异时移,很多东西都已经变化了,那个列表也似乎陈旧了.而且,该文也只是对十种工具独立的介绍,显得有些罗列的感觉,是不是每个工具都是同等重要 ...