题目链接

\(Description\)

求$$\sum_{i=1}n\sum_{j=1}md(ij)$$

\(Solution\)

有结论:$$d(nm)=\sum_{i|d}\sum_{j|d}[\gcd(i,j)=1]$$

证明可以对质因子单独考虑吧,不想写了,背过就好了。见这:https://blog.csdn.net/PoPoQQQ/article/details/45078079。

\[\begin{aligned}\sum_{i=1}^n\sum_{j=1}^md(ij)&=\sum_{i=1}^n\sum_{j=1}^m\sum_{a|i}\sum_{b|j}[\gcd(a,b)=1]\end{aligned}
\]

转为枚举\(a,b\),$$\sum_{i=1}n\sum_{j=1}md(ij)=\sum_{i=1}n\sum_{j=1}m\lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{j}\rfloor[\gcd(i,j)=1]$$

然后反演,设$$F(d)=\sum_{i=1}n\sum_{j=1}m\lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{j}\rfloor\left[d\mid(i,j)\right]=\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac md\rfloor}\lfloor\frac{n}{id}\rfloor\lfloor\frac{m}{jd}\rfloor\f(n)=\sum_{i=1}n\sum_{j=1}m\lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{j}\rfloor\left[(i,j)=n\right]$$

则$$\begin{aligned}f(1)&=\sum_{d=1}{\min(n,m)}\mu(d)F(d)\&=\sum_{d=1}{\min(n,m)}\mu(d)\sum_{i=1}^{\lfloor\frac nd\rfloor}\lfloor\frac{n}{id}\rfloor\sum_{j=1}^{\lfloor\frac md\rfloor}\lfloor\frac{m}{jd}\rfloor\end{aligned}$$

令\(g(n)=\sum_{i=1}\lfloor\frac ni\rfloor\),则\(g(n)\)可以同样用数论分块\(O(n\sqrt n)\)的时间预处理。(也可以线性筛出来,不过很麻烦。)

那么\(f(1)=\sum_{d=1}^{\min(n,m)}\mu(d)g(\lfloor\frac nd\rfloor)g(\lfloor\frac md\rfloor)\)可以\(O(\sqrt n)\)计算。

终于填了这个近半年前留下的坑了...

//1772kb	6448ms
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=5e4; int cnt,P[N>>3],mu[N+3];
long long g[N+3];
bool not_P[N+3]; char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
void Init()
{
mu[1]=1;
for(int i=2; i<=N; ++i)
{
if(!not_P[i]) P[++cnt]=i, mu[i]=-1;
for(int j=1,v; j<=cnt&&(v=i*P[j])<=N; ++j)
{
not_P[v]=1;
if(i%P[j]) mu[v]=-mu[i];
else break;//mu[v]=0;
}
}
for(int i=1; i<=N; ++i) mu[i]+=mu[i-1];
for(int i=1; i<=N; ++i)
{
long long ans=0;
for(int j=1,nxt; j<=i; j=nxt+1)
{
nxt=i/(i/j);
ans+=1ll*(nxt-j+1)*(i/j);
}
g[i]=ans;
}
} int main()
{
Init();
for(int T=read(),n,m; T--; )
{
n=read(),m=read();
long long ans=0;
for(int i=1,nxt,lim=std::min(n,m); i<=lim; i=nxt+1)
{
nxt=std::min(n/(n/i),m/(m/i));
ans+=1ll*(mu[nxt]-mu[i-1])*g[n/i]*g[m/i];
}
printf("%lld\n",ans);
}
return 0;
}

BZOJ.3994.[SDOI2015]约数个数和(莫比乌斯反演)的更多相关文章

  1. BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]

    2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...

  2. [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)

    [BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...

  3. BZOJ 3994: [SDOI2015]约数个数和3994: [SDOI2015]约数个数和 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3994 https://blog.csdn.net/qq_36808030/article/deta ...

  4. P3327 [SDOI2015]约数个数和 莫比乌斯反演

    P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...

  5. BZOJ 3994: [SDOI2015]约数个数和

    3994: [SDOI2015]约数个数和 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 898  Solved: 619[Submit][Statu ...

  6. 【BZOJ3994】[SDOI2015]约数个数和 莫比乌斯反演

    [BZOJ3994][SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组 ...

  7. ●BZOJ 3994 [SDOI2015]约数个数和

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3994 题解: 莫比乌斯反演 (先定义这样一个符号[x],如果x为true,则[x]=1,否则 ...

  8. 【刷题】BZOJ 3994 [SDOI2015]约数个数和

    Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T ...

  9. [SDOI2015]约数个数和 莫比乌斯反演

    ---题面--- 题解: 为什么SDOI这么喜欢莫比乌斯反演,,, 首先有一个结论$$d(ij) = \sum_{x|i}\sum_{y|j}[gcd(x, y) == 1]$$为什么呢?首先,可以看 ...

随机推荐

  1. poj 2438 Children's Dining

    http://poj.org/problem?id=2438 题意: 有2*N个人要坐在一张圆桌上吃饭,有的人之间存在敌对关系,安排一个座位次序,使得敌对的人不相邻. 假设每个人最多有N-1个敌人.如 ...

  2. 蓝桥杯 算法提高 9-3摩尔斯电码 _c++ Map容器用法

    //****|*|*-**|*-**|--- #include <iostream> #include <map> #include <vector> #inclu ...

  3. 论文中“but”与“however”的区别

  4. gcc初步窥探

    由于没有上过Linux编程这门课,所以Linux学得很水啊!!用来用去都是ls -al ; cd .. ;这些渣命令,尤其gcc都不知道什么东西来的,所以先学一下吧. 一.程序的编译过程 对于GUN编 ...

  5. 第10月第5天 v8

    1. brew install v8 http://www.cnblogs.com/tinyjian/archive/2017/01/17/6294352.html http://blog.csdn. ...

  6. js自定制周期函数

    function mySetInterval(fn, milliSec,count){ function interval(){ if(typeof count==='undefined'||coun ...

  7. PHP中冒号、endif、endwhile、endfor使用介绍

    我们经常在wordpress一类博客程序的模板里面看到很多奇怪的PHP语法,比如: 复制代码代码如下: <?php if(empty($GET_['a'])): ?> <font c ...

  8. Kaggle案例分析3--Bag of Words Meets Bags of Popcorn

    项目描述:这是一个关于情感分析的教程.谷歌的Word2Vec(文本深度表示模型)是一个由深度学习驱动的方法, 旨在获取words内部的含义.Word2Vec试图理解单词之间的含义与语义关系.它类似于r ...

  9. Matplotlib安装感想

    刚刚安装完numpy,看完书又涉及到matplotlib,哎,安装它浪费了我很多时间,但收获很多呀 下面介绍一下具体的安装过程: (1)http://matplotlib.org/downloads. ...

  10. 浅谈js设计模式之发布 — 订阅模式

    发布 — 订阅模式又叫观察者模式,它定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都将得到通知.在 JavaScript开发中,我们一般用事件模型来替代传统的发布 — ...