题目链接

\(Description\)

求$$\sum_{i=1}n\sum_{j=1}md(ij)$$

\(Solution\)

有结论:$$d(nm)=\sum_{i|d}\sum_{j|d}[\gcd(i,j)=1]$$

证明可以对质因子单独考虑吧,不想写了,背过就好了。见这:https://blog.csdn.net/PoPoQQQ/article/details/45078079。

\[\begin{aligned}\sum_{i=1}^n\sum_{j=1}^md(ij)&=\sum_{i=1}^n\sum_{j=1}^m\sum_{a|i}\sum_{b|j}[\gcd(a,b)=1]\end{aligned}
\]

转为枚举\(a,b\),$$\sum_{i=1}n\sum_{j=1}md(ij)=\sum_{i=1}n\sum_{j=1}m\lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{j}\rfloor[\gcd(i,j)=1]$$

然后反演,设$$F(d)=\sum_{i=1}n\sum_{j=1}m\lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{j}\rfloor\left[d\mid(i,j)\right]=\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac md\rfloor}\lfloor\frac{n}{id}\rfloor\lfloor\frac{m}{jd}\rfloor\f(n)=\sum_{i=1}n\sum_{j=1}m\lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{j}\rfloor\left[(i,j)=n\right]$$

则$$\begin{aligned}f(1)&=\sum_{d=1}{\min(n,m)}\mu(d)F(d)\&=\sum_{d=1}{\min(n,m)}\mu(d)\sum_{i=1}^{\lfloor\frac nd\rfloor}\lfloor\frac{n}{id}\rfloor\sum_{j=1}^{\lfloor\frac md\rfloor}\lfloor\frac{m}{jd}\rfloor\end{aligned}$$

令\(g(n)=\sum_{i=1}\lfloor\frac ni\rfloor\),则\(g(n)\)可以同样用数论分块\(O(n\sqrt n)\)的时间预处理。(也可以线性筛出来,不过很麻烦。)

那么\(f(1)=\sum_{d=1}^{\min(n,m)}\mu(d)g(\lfloor\frac nd\rfloor)g(\lfloor\frac md\rfloor)\)可以\(O(\sqrt n)\)计算。

终于填了这个近半年前留下的坑了...

//1772kb	6448ms
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=5e4; int cnt,P[N>>3],mu[N+3];
long long g[N+3];
bool not_P[N+3]; char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
void Init()
{
mu[1]=1;
for(int i=2; i<=N; ++i)
{
if(!not_P[i]) P[++cnt]=i, mu[i]=-1;
for(int j=1,v; j<=cnt&&(v=i*P[j])<=N; ++j)
{
not_P[v]=1;
if(i%P[j]) mu[v]=-mu[i];
else break;//mu[v]=0;
}
}
for(int i=1; i<=N; ++i) mu[i]+=mu[i-1];
for(int i=1; i<=N; ++i)
{
long long ans=0;
for(int j=1,nxt; j<=i; j=nxt+1)
{
nxt=i/(i/j);
ans+=1ll*(nxt-j+1)*(i/j);
}
g[i]=ans;
}
} int main()
{
Init();
for(int T=read(),n,m; T--; )
{
n=read(),m=read();
long long ans=0;
for(int i=1,nxt,lim=std::min(n,m); i<=lim; i=nxt+1)
{
nxt=std::min(n/(n/i),m/(m/i));
ans+=1ll*(mu[nxt]-mu[i-1])*g[n/i]*g[m/i];
}
printf("%lld\n",ans);
}
return 0;
}

BZOJ.3994.[SDOI2015]约数个数和(莫比乌斯反演)的更多相关文章

  1. BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]

    2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...

  2. [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)

    [BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...

  3. BZOJ 3994: [SDOI2015]约数个数和3994: [SDOI2015]约数个数和 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3994 https://blog.csdn.net/qq_36808030/article/deta ...

  4. P3327 [SDOI2015]约数个数和 莫比乌斯反演

    P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...

  5. BZOJ 3994: [SDOI2015]约数个数和

    3994: [SDOI2015]约数个数和 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 898  Solved: 619[Submit][Statu ...

  6. 【BZOJ3994】[SDOI2015]约数个数和 莫比乌斯反演

    [BZOJ3994][SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组 ...

  7. ●BZOJ 3994 [SDOI2015]约数个数和

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3994 题解: 莫比乌斯反演 (先定义这样一个符号[x],如果x为true,则[x]=1,否则 ...

  8. 【刷题】BZOJ 3994 [SDOI2015]约数个数和

    Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T ...

  9. [SDOI2015]约数个数和 莫比乌斯反演

    ---题面--- 题解: 为什么SDOI这么喜欢莫比乌斯反演,,, 首先有一个结论$$d(ij) = \sum_{x|i}\sum_{y|j}[gcd(x, y) == 1]$$为什么呢?首先,可以看 ...

随机推荐

  1. 命令卸载ie11

    管理员运行cmd. 执行命令FORFILES /P %WINDIR%\servicing\Packages /M Microsoft-Windows-InternetExplorer-*11.*.mu ...

  2. kubeadm部署Kubernetes集群

    Preface 通过kubeadm管理工具部署Kubernetes集群,相对离线包的二进制部署集群方式而言,更为简单与便捷.以下为个人学习总结: 两者区别在于前者部署方式使得大部分集群组件(Kube- ...

  3. VS之解决方案文件夹

    Visual Studio提供了一种特殊的文件夹,它可以帮助组织大型解决方案.它们的名称也恰如其分,叫做“解决方案文件夹”. 注意   解决方案文件夹是解决方案资源管理器中的一种组织工具,创建这样的文 ...

  4. ASP.NET批量下载文件

    一.实现步骤 在用户操作界面,由用户选择需要下载的文件,系统根据所选文件,在服务器上创建用于存储所选文件的临时文件夹,将所选文件拷贝至临时文件夹.然后调用 RAR程序,对临时文件夹进行压缩,然后输出到 ...

  5. Spark笔记之使用UDF(User Define Function)

    一.UDF介绍 UDF(User Define Function),即用户自定义函数,Spark的官方文档中没有对UDF做过多介绍,猜想可能是认为比较简单吧. 几乎所有sql数据库的实现都为用户提供了 ...

  6. cordova app 监听物理返回键

    物理返回键指的是手机系统自带的返回按钮,通过cordova监听返回按钮操作,可以禁止某些页面的返回操作,以及实现点击两次返回按钮退出应用. var pageUrl = window.location. ...

  7. lucene入门创建索引——(二)

    1.程序宏观结构图

  8. linux sftp安装【转】

    工具:虚拟机:VMware Workstation Pro.操作系统:CentOS-6.4-x86_64-minimal.终端模拟器:Xshell 5 .ftp:filezilla 一.让虚拟机联网 ...

  9. React-Native 之 Navigator与NavigatorIOS使用

    前言 学习本系列内容需要具备一定 HTML 开发基础,没有基础的朋友可以先转至 HTML快速入门(一) 学习 本人接触 React Native 时间并不是特别长,所以对其中的内容和性质了解可能会有所 ...

  10. jquery-easyui:格式化列

    主框架页面: 在主界面区会加载西区菜单点击的URL内容. <!DOCTYPE html> <html> <head> <meta charset=" ...