此题就是求格点中三角形的个数。

就是找出三点不共线的个数。

n*m的矩形中有(n+1)*(m+1)个格点。

选出三个点的总个数为:C((n+1)*(m+1),3).

减掉共线的情况就是答案了。

首先是水平和垂直共线的情况:C(n+1,3)*(m+1)+C(m+1,3)*(n+1);

然后斜的共线的情况就是枚举矩形。

斜着共线的三点用枚举法n*m的矩形,对角两个点中间共有gcd(m,n)-1个点,两条对角线,所以数量*2,大矩形里共有(N-n+1)*(M-m+1)个的矩形,一并去除

 #include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std; int gcd(int a,int b)
{
if(b==)return a;
return gcd(b,a%b);
}
long long Com(int n,int r)
{
if(n<r)return ;//这个一定要
if(n-r<r)r=n-r;
int i,j;
long long ret=;
for(i=,j=;i<r;i++)
{
ret*=(n-i);
for(;j<=r&&ret%j==;j++)ret/=j;
}
return ret;
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
long long ans=Com((n+)*(m+),);//选三个点的所有组合数
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
ans-=(long long)(gcd(i,j)-)*(n-i+)*(m-j+)*;
}
ans-=Com(n+,)*(m+);
ans-=Com(m+,)*(n+);
printf("%lld\n",ans);//ZOJ用lld,不能用I64d
}
return ;
}

zoj 3647 智商题的更多相关文章

  1. 九度OJ 1032:ZOJ (基础题)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:4569 解决:2561 题目描述: 读入一个字符串,字符串中包含ZOJ三个字符,个数不一定相等,按ZOJ的顺序输出,当某个字符用完时,剩下的 ...

  2. ZOJ 3647 Gao the Grid dp,思路,格中取同一行的三点,经典 难度:3

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4837 三角形的总数=格子中任取3个点的组合数-同一横行任取3个点数目-同一纵行 ...

  3. zoj 3657 策略题 easy

    http://acm.zju.edu.cn/onlinejudge/showProblem.do? problemId=4880 由于是要去牡丹江.是浙大出题,所以找了份浙大的题,第一道水题做的就不顺 ...

  4. 【20181102T2】飞越行星带【智商题+最小瓶颈路】

    题面 [正解] 一眼不可做啊 --相当于求路线上穿过的点最小距离最大 最小最大--二分啊 现在相当于给一个直径,要判断这个直径是否能从左边穿到右边 我们可以在距离不超过直径的点连一条边,\(y=0\) ...

  5. Saddle Point ZOJ - 3955 题意题

    Chiaki has an n × m matrix A. Rows are numbered from 1 to n from top to bottom and columns are numbe ...

  6. D - Matrix Multiplication ZOJ - 2316 规律题

    Let us consider undirected graph G = which has N vertices and M edges. Incidence matrix of this grap ...

  7. agc016B - Colorful Hats(智商题)

    题意 题目链接 有$n$个人,每个人有一种颜色,第$i$个人说除了我之外有$a_i$种不同的颜色,问是否存在一组合法解 Sol 700分的题就这么神仙了么..好难啊... 先说结论吧 设$mx, mn ...

  8. poj1426--Find The Multiple(广搜,智商题)

    Find The Multiple Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 18527   Accepted: 749 ...

  9. TTTTTTTTTTTTTTTTTTT CF 银行转账 图论 智商题

    C. Money Transfers time limit per test 1 second memory limit per test 256 megabytes input standard i ...

随机推荐

  1. telegraf、influxDB、Grafana的安装与基本使用

    目的理解influxDB的数据收集原理和方法为使用grafana分析数据及展示结作好准备介绍[收集数据] Telegraf 是一个用 Go 编写的代理程序,可收集系统和服务的统计数据,并写入到 Inf ...

  2. 流媒体技术学习笔记之(十四)FFmpeg进行笔记本摄像头+麦克风实现流媒体直播服务

    FFmpeg推送视频流,Nginx RTMP模块转发,VLC播放器播放,实现整个RTMP直播 查看本机电脑的设备 ffmpeg -list_devices true -f dshow -i dummy ...

  3. 流媒体技术学习笔记之(四)解决问题video.js 播放m3u8格式的文件,根据官方的文档添加videojs-contrib-hls也不行的原因解决了

    源码地址:https://github.com/Tinywan/PHP_Experience 总结: 说明: 测试环境:本测试全部来自阿里云直播和OSS存储点播以及本地服务器直播和点播 播放器:Vid ...

  4. AngularJs入门篇-控制器的加深理解基础篇

    下面做的是一个更新时间的效果,每一秒钟就会更新一下,视图中会显示出当前的时间   下面的这个例子中,SceondController函数将接受两个参数,既该DOM元素的$scope和$timeout. ...

  5. shell ssh 批量执行

    ssh 批量执行命令 #版本1 #!/bin/bash while read line do Ip=`echo $line|awk '{print $1}'` Passwd=`echo $line|a ...

  6. 对package.json的理解和学习

    一.初步理解 1. npm安装package.json时  直接转到当前项目目录下用命令npm install 或npm install --save-dev安装即可,自动将package.json中 ...

  7. SocketServer源码学习补充

    在前两个文章中整理了关于BaseServer部分以及BaseRequestHandler,以及通过对TCP的处理的流程的整理,这次整理的是剩下的关于用于扩展的部分,这里通过对线程扩展进行整理 Thre ...

  8. 关于caffe的安装问题

    在caffe的安装过程中,出现 /usr/bin/ld: cannot find -lcblas /usr/bin/ld: cannot find -latlas的问题 这时解决方案为http://s ...

  9. source insigh安装使用

    下载和安装: 最好去官网下载(http://www.sourceinsight.com/),最新版本是3.5. 第一次去六维下载了sourceinsight,免安装,但是打开后发现界面没有任何窗口,全 ...

  10. Expression Tree Build

    The structure of Expression Tree is a binary tree to evaluate certain expressions.All leaves of the ...