HDU 5212 Code (莫比乌斯反演)
题意:给定上一个数组,求
析:

其中,f(d)表示的是gcd==d的个数,然后用莫比乌斯反演即可求得,len[i]表示能整队 i 的个数,可以线性筛选得到,
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#include <numeric>
#define debug() puts("++++")
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
//#define all 1,n,1
#define FOR(i,x,n) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e4 + 5;
const int maxm = 2e4 + 10;
const LL mod = 10007;
const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
} int a[maxn], len[maxn];
bool vis[maxn];
int prime[maxn], mu[maxn]; void Moblus(){
mu[1] = 1;
int tot = 0;
for(int i = 2; i < maxn; ++i){
if(!vis[i]) prime[tot++] = i, mu[i] = -1;
for(int j = 0; j < tot; ++j){
int t = i * prime[j];
if(t >= maxn) break;
vis[t] = 1;
if(i % prime[j] == 0) break;
mu[t] = -mu[i];
}
}
} int f[maxn]; int main(){
Moblus();
while(scanf("%d", &n) == 1){
ms(a, 0); ms(len, 0); ms(f, 0);
for(int i = 0; i < n; ++i){
int x; scanf("%d", &x);
++a[x];
} for(int i = 1; i < maxn; ++i)
for(int j = i; j < maxn; j += i)
len[i] += a[j];
for(int i = 1; i < maxn; ++i)
for(int j = i, cnt = 1; j < maxn; j += i, ++cnt)
f[i] += mu[cnt] * sqr(len[j]);
LL ans = 0;
for(int i = 2; i < maxn; ++i)
ans = (ans + i * (i-1) * (LL)f[i]) % mod;
printf("%lld\n", ans);
}
return 0;
}
HDU 5212 Code (莫比乌斯反演)的更多相关文章
- hdu.5212.Code(莫比乌斯反演 && 埃氏筛)
Code Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submi ...
- POJ3094 Sky Code(莫比乌斯反演)
POJ3094 Sky Code(莫比乌斯反演) Sky Code 题意 给你\(n\le 10^5\)个数,这些数\(\le 10^5\),问这些这些数组成的互不相同的无序四元组(a,b,c,d)使 ...
- HDU 5212 Code【莫比乌斯反演】
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5212 题意: 给定序列,1≤i,j≤n,求gcd(a[i],a[j])∗(gcd(a[i],a[j] ...
- HDU 4746 Mophues (莫比乌斯反演应用)
Mophues Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 327670/327670 K (Java/Others) Total ...
- [HDU 5608]Function(莫比乌斯反演 + 杜教筛)
题目描述 有N2−3N+2=∑d∣Nf(d)N^2-3N+2=\sum_{d|N} f(d)N2−3N+2=∑d∣Nf(d) 求∑i=1Nf(i)\sum_{i=1}^{N} f(i)∑i=1Nf ...
- hdu 1695 GCD 莫比乌斯反演入门
GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...
- HDU 1695 GCD 莫比乌斯反演
分析:简单的莫比乌斯反演 f[i]为k=i时的答案数 然后就很简单了 #include<iostream> #include<algorithm> #include<se ...
- POJ 3904 JZYZOJ 1202 Sky Code 莫比乌斯反演 组合数
http://poj.org/problem?id=3904 题意:给一些数,求在这些数中找出四个数互质的方案数. 莫比乌斯反演的式子有两种形式http://blog.csdn.net/out ...
- Mophues HDU - 4746 (莫比乌斯反演)
Mophues \[ Time Limit: 10000 ms\quad Memory Limit: 262144 kB \] 题意 求出满足 \(gcd\left(a,b\right) = k\), ...
随机推荐
- opencv版本的问题
opencv版本的问题(由于我安装了两个版本opencv-2.4.9 and opencv-3.1.0),搜了相关问题,可以通过修改了CMakeList.txt解决此问题. 参考了这个博客:http: ...
- YII2中日志的配置与使用
YII2中给我们提供了非常方便的日志组件,只需要简单配置一下就可以使用. 我们在config/web.php中配置如下: return [ //log必须在bootstrap期间就被加载,便于及时调度 ...
- Gradle编译报错
问题重现 gradle build A problem occurred evaluating root project 'Spring4WebSocket'. > Failed to appl ...
- 转 C++函数返回值,你必须注意的问题
归根结底,C++所面临的问题要求它提供各种各样的机制以保证性能,也许,这辈子也见不到C++能安全有效的自己进行内存垃圾回收..... 老程序猿都会提醒菜鸟,注意函数的返回值,因为,很可能,你的函数返回 ...
- sqlserver自带的导入导出工具,分别导入大批量mysql和oracle数据时的感受
sqlserver自带的导入导出工具,分别导入大批量mysql和oracle数据时,mysql经常出现格式转换出错,不好导入 导入的数据量比较大时,还不如自己写个工具导入 今天在导oracle时,想 ...
- HTML JavaScript语法练习
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- hdu (kruska and prime) 继续畅通工程
题目http://acm.hdu.edu.cn/showproblem.php?pid=1879 复习一下最小生成树的两个基本算法. 由于存在道路是否已修建的问题,如果已修建,那么该条道路的成本即为0 ...
- AngularJS 高级程序设计
1.5.4 安装Web服务器 原来的: connect.static("../angularjs"); 报错.可以修改为: var connect = require('conne ...
- JSP自定义标签(标签处理器 tld文件)
标签的形式如下,标签处理器就是处理JSP页面中的标签的属性和内容,定义好之后就跟使用JSTL一样 <标签名 属性名="属性值" 属性名="属性值"> ...
- activemq , redis
activemq是干什么的?即时消息通信,简单说: A发送消息给activemq 服务,B监听服务获取消息.假如有如下场景: A发送了一个请求,但是这个请求需要做 10 项工作,如果按照正常操作,需要 ...