描述

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want
to be within a certain distance of each other in line. Some really
dislike each other and want to be separated by at least a certain
distance. A list of ML (1 <= ML <= 10,000) constraints describes
which cows like each other and the maximum distance by which they may be
separated; a subsequent list of MD constraints (1 <= MD <=
10,000) tells which cows dislike each other and the minimum distance by
which they must be separated.

Your job is to compute, if
possible, the maximum possible distance between cow 1 and cow N that
satisfies the distance constraints.

输入

Line 1: Three space-separated integers: N, ML, and MD.

Lines
2..ML+1: Each line contains three space-separated positive integers: A,
B, and D, with 1 <= A < B <= N. Cows A and B must be at most D
(1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each
line contains three space-separated positive integers: A, B, and D, with
1 <= A < B <= N. Cows A and B must be at least D (1 <= D
<= 1,000,000) apart.

输出

Line
1: A single integer. If no line-up is possible, output -1. If cows 1
and N can be arbitrarily far apart, output -2. Otherwise output the
greatest possible distance between cows 1 and N.

样例输入

4 2 1
1 3 10
2 4 20
2 3 3

样例输出

27

提示

Explanation of the sample:

There
are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2
and #4 must be no more than 20 units apart, and cows #2 and #3 dislike
each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

题意
有N头牛,按1-N排序,有ML对互相喜欢的牛,距离<=d,有MD对互相厌恶的牛,距离>=d,求牛1到牛N的最大距离,若不能按1-N排序(无解)输出-1,若1-N距离可以为无穷输出-2,其余输出1-N的距离
题解
这道题也是磨了很久才搞定的,对差分约束理解的不是很好
首先大致讲下差分约束
首先给你一堆式子
B-A<=c//1
C-B<=a//2
C-A<=d//3
求C-A的最大值
这里把1+2,得到C-A<=a+c//1
          C-A<=d    //2
这里可以看到,要同时满足1和2,就是max(C-A)=min(a+c,d)
我们看题目,通过题目可以写出下面几个不等式
Dist(J)-Dist(J-1)>=0(2<=j<=4) //1
Dist(3)-Dist(1)<=10                     //2
Dist(4)-Dist(2)<=20                     //3
Dist(3)-Dist(2)>=3          //4
这里把1和4做个变化,和23符号一致,得到
Dist(J-1)-Dist(J)<=0(2<=j<=4) //1
Dist(3)-Dist(1)<=10                     //2
Dist(4)-Dist(2)<=20                     //3

Dist(2)-Dist(3)<=-3         //4

对于满足像D[X]-D[Y]<=Z的情况,可以建立一条Y->X距离为Z的有向边,求1->N的最大值,就是求1->N的最短路径
如果满足像D[X]-D[Y]>=Z的情况,求1->N的最小值,就是求1->N的最长路径
 
解的存在性
差分约束存在3种情况
1.有解(直接输出Dist[n])
2.无解,出现负权圈,图内有两点之间有一个圈然后这个圈的权是负的,A-B和B-A的权都是负数(一个点的入队或者入栈次数>n就说明有负圈)(输出-1)
3.无穷多解,如果1到N根本不可达,就说明两者没有约束条件,可是是无穷多解(输出-2)
 
链式前向星
这里讲一下链式前向星存图
const int N=,M=;
int head[N],cnt=;
struct edge
{
int v,w,next;
}edges[M];
void add(int u,int v,int w)
{
edges[cnt].v=v;
edges[cnt].w=w;
edges[cnt].next=head[u];
head[u]=cnt++;
}

上面这个意思是每次在链表结构里的首部存一条(u,v)权值为w的边,这个存储和输入方式是成逆序的,而且时间O(1),空间没有浪费

所以只需要i=head[u];i!=0;i=edges[i].next就可以访问所有从U出发的边

然后这道题就是建图,建完图跑最短路径,这里用SPFA可以判断负圈

代码
这里SPFA用栈来做了,当然用队列也可以
 #include<cstdio>
#include<cstring>
#include<stack>
using namespace std;
#define INF 0x3f3f3f3f
const int N=,M=;
struct edge
{
int v,w,next;
}edges[M];
int Dist[N],Vis[N],head[N],In[N],cnt=;
void add(int u,int v,int w)
{
edges[cnt].v=v;
edges[cnt].w=w;
edges[cnt].next=head[u];
head[u]=cnt++;
}
int spfa(int n)
{
memset(Dist,INF,sizeof(Dist));
stack<int> st;
st.push();
Dist[]=;
while(!st.empty())
{
int u=st.top();st.pop();
Vis[u]=;
for(int i=head[u];i;i=edges[i].next)
{
int v=edges[i].v,w=edges[i].w;
if(Dist[v]>Dist[u]+w)
{
Dist[v]=Dist[u]+w;
if(Vis[v])continue;
Vis[v]=;
st.push(v);
if(++In[v]>n)return ;//一个点的入栈次数>n说明存在负圈,无解
}
}
}
return ;
}
int main()
{
int n,ml,md,a,b,c;
scanf("%d%d%d",&n,&ml,&md);
for(int i=;i<ml;i++)
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
for(int i=;i<md;i++)
{
scanf("%d%d%d",&a,&b,&c);
add(b,a,-c);//差分约束
}
if(spfa(n)==)printf("-1\n");
else printf("%d\n",Dist[n]==INF?-:Dist[n]);
return ;
}

POJ 3169 Layout(差分约束+链式前向星+SPFA)的更多相关文章

  1. [poj3159]Candies(差分约束+链式前向星dijkstra模板)

    题意:n个人,m个信息,每行的信息是3个数字,A,B,C,表示B比A多出来的糖果不超过C个,问你,n号人最多比1号人多几个糖果 解题关键:差分约束系统转化为最短路,B-A>=C,建有向边即可,与 ...

  2. 链式前向星+SPFA

    今天听说vector不开o2是数组时间复杂度常数的1.5倍,瞬间吓傻.然后就问好的图表达方式,然后看到了链式前向星.于是就写了一段链式前向星+SPFA的,和普通的vector+SPFA的对拍了下,速度 ...

  3. 【模板】链式前向星+spfa

    洛谷传送门--分糖果 博客--链式前向星 团队中一道题,数据很大,只能用链式前向星存储,spfa求单源最短路. 可做模板. #include <cstdio> #include <q ...

  4. POJ 3169 Layout (差分约束)

    题意:给定一些母牛,要求一个排列,有的母牛距离不能超过w,有的距离不能小于w,问你第一个和第n个最远距离是多少. 析:以前只是听说过个算法,从来没用过,差分约束. 对于第 i 个母牛和第 i+1 个, ...

  5. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  6. POJ 3169 Layout(差分约束 线性差分约束)

    题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...

  7. poj 3169 Layout 差分约束模板题

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6415   Accepted: 3098 Descriptio ...

  8. POJ 1511 Invitation Cards 链式前向星+spfa+反向建边

    Invitation Cards Time Limit: 8000MS   Memory Limit: 262144K Total Submissions: 27200   Accepted: 902 ...

  9. POJ 1511 链式前向星+SPFA

    #include<iostream> #include<cstdio> #include<cstdlib> using namespace std; const i ...

随机推荐

  1. WPF线性渐变画刷应用之——炫彩线条

    效果图: Xaml代码: <Rectangle Width="800" Height="10"> <Rectangle.Fill> &l ...

  2. day43-socketserver

    基于tcp的套接字,关键就是两个循环,一个链接循环,一个通信循环 socketserver模块中分两大类:server类(解决链接问题)和request类(解决通信问题) server类: reque ...

  3. 如何让cxgrid自动调整列宽

    1.选中cxgridview,在属性中找OptionsView--->ColumAutoWidth,把这个属性设为True; 2.在FDMemtable的open之后加上如下代码即可 [delp ...

  4. 4.Python文件操作

    文件内需要写入的内容 Seems the love I’ve ever known 看来,过去我所知道的爱情 Has always been the most destructive kind 似乎总 ...

  5. U3D开发中关于脚本方面的限制-有关IOS反射和JIT的支持问题

    U3D文档中说明了,反射在IOS是支持的,除了system.reflection.emit空间内的,其它都支持.JIT是不支持的. 本质上来说即是:只要不在运行时动态生成代码的行为都支持,reflec ...

  6. Linux后门入侵检测工具

    一.rootkit简介 rootkit是Linux平台下最常见的一种木马后门工具,它主要通过替换系统文件来达到入侵和和隐蔽的目的,这种木马比普通木马后门更加危险和隐蔽,普通的检测工具和检查手段很难发现 ...

  7. debian下redis2.8.17安装过程

    下载redis源码包,我下载的是redis2.8.17 解压缩该源码包 tar zxf redis-2.8.17.tar.gz 进入解压缩后的目录 cd redis-2.8.17/ 添加redis用户 ...

  8. python实现Excel删除特定行、拷贝指定行操作

    工作中遇到的,本来用VBA写的,操作很慢,尝试用Python实现, 任务需求: 从原始的两张表中拷贝行到五张表中,如下表所示: source1和source2是一样的格式:         one t ...

  9. SSM综合练习

    CRM系统 CRM项目外观 1. 开发环境 IDE: Eclipse Neon Release (4.6.0) Jdk: 1.8 数据库: MySQL 2. 创建数据库 创建crm数据库,这里使用的是 ...

  10. elasticsearch 问题

    elasticsearch 的端口默认绑定到 127.0.0.1 上,对外开放 http 端口就配置 http.host,对外开放 tcp 端口就配置 network.host [1]: max fi ...