POJ 3169 Layout(差分约束+链式前向星+SPFA)
描述
Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).
Some cows like each other and want
to be within a certain distance of each other in line. Some really
dislike each other and want to be separated by at least a certain
distance. A list of ML (1 <= ML <= 10,000) constraints describes
which cows like each other and the maximum distance by which they may be
separated; a subsequent list of MD constraints (1 <= MD <=
10,000) tells which cows dislike each other and the minimum distance by
which they must be separated.
Your job is to compute, if
possible, the maximum possible distance between cow 1 and cow N that
satisfies the distance constraints.
输入
Line 1: Three space-separated integers: N, ML, and MD.
Lines
2..ML+1: Each line contains three space-separated positive integers: A,
B, and D, with 1 <= A < B <= N. Cows A and B must be at most D
(1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each
line contains three space-separated positive integers: A, B, and D, with
1 <= A < B <= N. Cows A and B must be at least D (1 <= D
<= 1,000,000) apart.
输出
Line
1: A single integer. If no line-up is possible, output -1. If cows 1
and N can be arbitrarily far apart, output -2. Otherwise output the
greatest possible distance between cows 1 and N.
样例输入
4 2 1
1 3 10
2 4 20
2 3 3
样例输出
27
提示
There
are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2
and #4 must be no more than 20 units apart, and cows #2 and #3 dislike
each other and must be no fewer than 3 units apart.
The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.
Dist(2)-Dist(3)<=-3 //4
const int N=,M=;
int head[N],cnt=;
struct edge
{
int v,w,next;
}edges[M];
void add(int u,int v,int w)
{
edges[cnt].v=v;
edges[cnt].w=w;
edges[cnt].next=head[u];
head[u]=cnt++;
}
上面这个意思是每次在链表结构里的首部存一条(u,v)权值为w的边,这个存储和输入方式是成逆序的,而且时间O(1),空间没有浪费
所以只需要i=head[u];i!=0;i=edges[i].next就可以访问所有从U出发的边
然后这道题就是建图,建完图跑最短路径,这里用SPFA可以判断负圈
#include<cstdio>
#include<cstring>
#include<stack>
using namespace std;
#define INF 0x3f3f3f3f
const int N=,M=;
struct edge
{
int v,w,next;
}edges[M];
int Dist[N],Vis[N],head[N],In[N],cnt=;
void add(int u,int v,int w)
{
edges[cnt].v=v;
edges[cnt].w=w;
edges[cnt].next=head[u];
head[u]=cnt++;
}
int spfa(int n)
{
memset(Dist,INF,sizeof(Dist));
stack<int> st;
st.push();
Dist[]=;
while(!st.empty())
{
int u=st.top();st.pop();
Vis[u]=;
for(int i=head[u];i;i=edges[i].next)
{
int v=edges[i].v,w=edges[i].w;
if(Dist[v]>Dist[u]+w)
{
Dist[v]=Dist[u]+w;
if(Vis[v])continue;
Vis[v]=;
st.push(v);
if(++In[v]>n)return ;//一个点的入栈次数>n说明存在负圈,无解
}
}
}
return ;
}
int main()
{
int n,ml,md,a,b,c;
scanf("%d%d%d",&n,&ml,&md);
for(int i=;i<ml;i++)
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
for(int i=;i<md;i++)
{
scanf("%d%d%d",&a,&b,&c);
add(b,a,-c);//差分约束
}
if(spfa(n)==)printf("-1\n");
else printf("%d\n",Dist[n]==INF?-:Dist[n]);
return ;
}
POJ 3169 Layout(差分约束+链式前向星+SPFA)的更多相关文章
- [poj3159]Candies(差分约束+链式前向星dijkstra模板)
题意:n个人,m个信息,每行的信息是3个数字,A,B,C,表示B比A多出来的糖果不超过C个,问你,n号人最多比1号人多几个糖果 解题关键:差分约束系统转化为最短路,B-A>=C,建有向边即可,与 ...
- 链式前向星+SPFA
今天听说vector不开o2是数组时间复杂度常数的1.5倍,瞬间吓傻.然后就问好的图表达方式,然后看到了链式前向星.于是就写了一段链式前向星+SPFA的,和普通的vector+SPFA的对拍了下,速度 ...
- 【模板】链式前向星+spfa
洛谷传送门--分糖果 博客--链式前向星 团队中一道题,数据很大,只能用链式前向星存储,spfa求单源最短路. 可做模板. #include <cstdio> #include <q ...
- POJ 3169 Layout (差分约束)
题意:给定一些母牛,要求一个排列,有的母牛距离不能超过w,有的距离不能小于w,问你第一个和第n个最远距离是多少. 析:以前只是听说过个算法,从来没用过,差分约束. 对于第 i 个母牛和第 i+1 个, ...
- POJ 3169 Layout(差分约束啊)
题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...
- POJ 3169 Layout(差分约束 线性差分约束)
题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...
- poj 3169 Layout 差分约束模板题
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6415 Accepted: 3098 Descriptio ...
- POJ 1511 Invitation Cards 链式前向星+spfa+反向建边
Invitation Cards Time Limit: 8000MS Memory Limit: 262144K Total Submissions: 27200 Accepted: 902 ...
- POJ 1511 链式前向星+SPFA
#include<iostream> #include<cstdio> #include<cstdlib> using namespace std; const i ...
随机推荐
- 学习opengl第一步
有两个地址一个是学习opengl基础知识的网站, 一个是博客园大牛分享的特别好的文章. 记录一下希望向坚持做俯卧撑一样坚持下去. 学习网站:http://learnopengl-cn.readthed ...
- P12, cer, provisioning profile
p12,本地私钥(实际上证书和私钥可以一起导出成p12,这里我们仅指私钥) cer,证书,即苹果签名后的公钥 provisioning profile描述文件 一个证书对应一个私钥,也就是本地的p12 ...
- vue:绑定数据的vue页面加载会闪烁问题
1:在挂在数据的容器加上属性 v-cloak 2:在css中添加如下代码 但有时候还是会不起作用,可能原因有两个 2.1:display属性被更高权限的display属性覆盖了,我们增加权限就好了 2 ...
- 一小段测试atof的代码
#include <stdio.h> //#include <stdlib.h> double a=0; int main(int argc, char *argv[]) { ...
- 检测浏览器是否支持cookie功能
<script> if(navigator.cookieEnabled) { document.write("你的浏览器支持cookie功能!"); } else{ d ...
- 13.Java国际化.md
一.国际化开发概述 软件的国际化:软件开发时,要使它能同时应对世界不同地区和国家的访问,并针对不同地区和国家的访问,提供相应的.符合来访者阅读习惯的页面或数据. 国际化(internationaliz ...
- Celery + RabbitMq 示意图
一直搞不清楚消息队列和任务队列是如何结合的,直到碰到了 :http://www.cnblogs.com/jijizhazha/p/8086119.html 中的图,恍然大悟,凭借自己的理解,画了这幅组 ...
- python批量操作Linux服务器脚本,ssh密码登录(执行命令、上传、下载)(一)
-*- paramiko.util.log_to_file( ssh = paramiko.SSHClient() ssh.set_missing ...
- android有关生命周期探讨
android生命周期直接贴一个经典图: 1.activity生命周期三段式,(开三步,跑,关三步,这三步都是回掉函数哦) 开 onCreate->onStart->onResume 跑 ...
- hasattr() getattr() setattr() 函数使用方法
1. hasattr(object, name) 判断object对象中是否存在name属性,当然对于python的对象而言,属性包含变量和方法:有则返回True,没有则返回False:需要注意的是n ...