enlarge your dataset
列举常见的几种数据集增强方法:
1.flip 翻折(左右,上下)
# NumPy.'img' = A single image.
flip_1 = np.fliplr(img)
# TensorFlow. 'x' = A placeholder for an image.
shape = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
flip_2 = tf.image.flip_up_down(x)
flip_3 = tf.image.flip_left_right(x)
flip_4 = tf.image.random_flip_up_down(x)
flip_5 = tf.image.random_flip_left_right(x)
2.rotation 旋转
# Placeholders: 'x' = A single image, 'y' = A batch of images
# 'k' denotes the number of 90 degree anticlockwise rotations
shape = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
rot_90 = tf.image.rot90(img, k=1)
rot_180 = tf.image.rot90(img, k=2)
# To rotate in any angle. In the example below, 'angles' is in radians
shape = [batch, height, width, 3]
y = tf.placeholder(dtype = tf.float32, shape = shape)
rot_tf_180 = tf.contrib.image.rotate(y, angles=3.1415)
# Scikit-Image. 'angle' = Degrees. 'img' = Input Image
# For details about 'mode', checkout the interpolation section below.
rot = skimage.transform.rotate(img, angle=45, mode='reflect')
3.scale 缩放
# Scikit Image. 'img' = Input Image, 'scale' = Scale factor
# For details about 'mode', checkout the interpolation section below.
scale_out = skimage.transform.rescale(img, scale=2.0, mode='constant')
scale_in = skimage.transform.rescale(img, scale=0.5, mode='constant')
# Don't forget to crop the images back to the original size (for
# scale_out)
4.crop 裁剪
# TensorFlow. 'x' = A placeholder for an image.
original_size = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = original_size)
# Use the following commands to perform random crops
crop_size = [new_height, new_width, channels]
seed = np.random.randint(1234)
x = tf.random_crop(x, size = crop_size, seed = seed)
output = tf.images.resize_images(x, size = original_size)
5.translation 水平或竖直移动
# pad_left, pad_right, pad_top, pad_bottom denote the pixel
# displacement. Set one of them to the desired value and rest to 0
shape = [batch, height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
# We use two functions to get our desired augmentation
x = tf.image.pad_to_bounding_box(x, pad_top, pad_left, height + pad_bottom + pad_top, width + pad_right + pad_left)
output = tf.image.crop_to_bounding_box(x, pad_bottom, pad_right, height, width)
6.gaussion noise 噪点
#TensorFlow. 'x' = A placeholder for an image.
shape = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
# Adding Gaussian noise
noise = tf.random_normal(shape=tf.shape(x), mean=0.0, stddev=1.0,
dtype=tf.float32)
output = tf.add(x, noise)
7.gan高级增强
旋转、缩放等操作,有可能造成未知区域弥补,具体细节以及上面各种方法,见下面原文链接介绍。
源文:https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced
译文:https://blog.csdn.net/u010801994/article/details/81914716
enlarge your dataset的更多相关文章
- AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...
- Paper: ImageNet Classification with Deep Convolutional Neural Network
本文介绍了Alex net 在imageNet Classification 中的惊人表现,获得了ImagaNet LSVRC2012第一的好成绩,开启了卷积神经网络在cv领域的广泛应用. 1.数据集 ...
- 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)
ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...
- 使用Keras基于RCNN类模型的卫星/遥感地图图像语义分割
遥感数据集 1. UC Merced Land-Use Data Set 图像像素大小为256*256,总包含21类场景图像,每一类有100张,共2100张. http://weegee.vision ...
- Install Tensorflow object detection API in Anaconda (Windows)
This blog is to explain how to install Tensorflow object detection API in Anaconda in Windows 10 as ...
- HTML5 数据集属性dataset
有时候在HTML元素上绑定一些额外信息,特别是JS选取操作这些元素时特别有帮助.通常我们会使用getAttribute()和setAttribute()来读和写非标题属性的值.但为此付出的代价是文档将 ...
- C#读取Excel,或者多个excel表,返回dataset
把excel 表作为一个数据源进行读取 /// <summary> /// 读取Excel单个Sheet /// </summary> /// <param name=& ...
- DataTable DataRow DataColumn DataSet
1.DataTable 数据表(内存) 2.DataRow DataTable 的行 3.DataColumn DataTable 的列 4.DataSet 内存中的缓存
- C# DataSet装换为泛型集合
1.DataSet装换为泛型集合(注意T实体的属性其字段类型与dataset字段类型一一对应) #region DataSet装换为泛型集合 /// <summary> /// 利用反射和 ...
随机推荐
- Node 操作 MySQL 数据库
1, 下载 mysql 依赖 => npm -i mysql 2, 写一个核心工具类, 用于获取线程池连接 mysql-util.js // 引入 mysql 数据库连接依赖 const mys ...
- springMVC源码学习之获取参数名
1.入口到参数处理调用流程 入口为spring-webmvc-4.3.18.RELEASE.jar中org.springframework.web.servlet.DispatcherServlet. ...
- 【ASP.NET 插件】分享一款富文本web编辑器UEditor
UEditor是由百度web前端研发部开发所见即所得富文本web编辑器,具有轻量,可定制,注重用户体验等特点,开源基于MIT协议,允许自由使用和修改代码... <%@ Page Language ...
- 开发MIS系统的相关技术
Java Web应用的核心技术包括以下几个方面:● JSP:进行输入和输出的基本手段.● JavaBean:完成功能的处理.● Servlet:对应用的流程进行控制.● JDBC:是与数据库进行交互不 ...
- Django中MEDIA_ROOT和MEDIA_URL
在django上传图片前端使用动态的配置方法 MEDIA_ROOT 代表着 要上传的路径会和你在models中写的上传的路径进行拼节形成最终文件上传的路径 MEDIA_URL主要就是映射了 在前端使用 ...
- Mac安装Python3报错Permission denied @ dir_s_mkdir - /usr/local/Frameworks
brew安装Python3时出现的问题: Error: Permission denied @ dir_s_mkdir - /usr/local/Frameworks /usr/local/Frame ...
- Django的路由层详情
1. Django的路由解析: 是从上往下进行匹配的 url(r'index', views.index) #这里的index 解析都可以被解析到的, abcindex index indexabc ...
- 最详细安装Esxi
https://www.vmware.com/cn/products/vsphere-hypervisor.html Exsi 是一款虚拟化系统,与VMware,VirtualBox不同,它不需要安装 ...
- CentOS 7.0安装配置Vsftp服务器步骤详解
安装Vsftp讲过最多的就是在centos6.x版本中了,这里小编看到有朋友写了一篇非常不错的CentOS 7.0安装配置Vsftp服务器教程,下面整理分享给各位. 一.配置防火墙,开启FTP服务器需 ...
- mysqldump: Got error: 1066: Not unique table/alias
mysqldump: Got error: 1066: Not unique table/alias myql 导出时提示如下: [root@localhost mysql]# mysqldump ...