列举常见的几种数据集增强方法:

1.flip  翻折(左右,上下)

# NumPy.'img' = A single image.
flip_1 = np.fliplr(img)
# TensorFlow. 'x' = A placeholder for an image.
shape = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
flip_2 = tf.image.flip_up_down(x)
flip_3 = tf.image.flip_left_right(x)
flip_4 = tf.image.random_flip_up_down(x)
flip_5 = tf.image.random_flip_left_right(x)

2.rotation 旋转

# Placeholders: 'x' = A single image, 'y' = A batch of images
# 'k' denotes the number of 90 degree anticlockwise rotations
shape = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
rot_90 = tf.image.rot90(img, k=1)
rot_180 = tf.image.rot90(img, k=2)
# To rotate in any angle. In the example below, 'angles' is in radians
shape = [batch, height, width, 3]
y = tf.placeholder(dtype = tf.float32, shape = shape)
rot_tf_180 = tf.contrib.image.rotate(y, angles=3.1415)
# Scikit-Image. 'angle' = Degrees. 'img' = Input Image
# For details about 'mode', checkout the interpolation section below.
rot = skimage.transform.rotate(img, angle=45, mode='reflect')

3.scale 缩放

# Scikit Image. 'img' = Input Image, 'scale' = Scale factor
# For details about 'mode', checkout the interpolation section below.
scale_out = skimage.transform.rescale(img, scale=2.0, mode='constant')
scale_in = skimage.transform.rescale(img, scale=0.5, mode='constant')
# Don't forget to crop the images back to the original size (for
# scale_out)

4.crop 裁剪

# TensorFlow. 'x' = A placeholder for an image.
original_size = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = original_size)
# Use the following commands to perform random crops
crop_size = [new_height, new_width, channels]
seed = np.random.randint(1234)
x = tf.random_crop(x, size = crop_size, seed = seed)
output = tf.images.resize_images(x, size = original_size)

5.translation 水平或竖直移动

# pad_left, pad_right, pad_top, pad_bottom denote the pixel
# displacement. Set one of them to the desired value and rest to 0
shape = [batch, height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
# We use two functions to get our desired augmentation
x = tf.image.pad_to_bounding_box(x, pad_top, pad_left, height + pad_bottom + pad_top, width + pad_right + pad_left)
output = tf.image.crop_to_bounding_box(x, pad_bottom, pad_right, height, width)

6.gaussion noise 噪点

#TensorFlow. 'x' = A placeholder for an image.
shape = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
# Adding Gaussian noise
noise = tf.random_normal(shape=tf.shape(x), mean=0.0, stddev=1.0,
dtype=tf.float32)
output = tf.add(x, noise)

7.gan高级增强

旋转、缩放等操作,有可能造成未知区域弥补,具体细节以及上面各种方法,见下面原文链接介绍。

源文:https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced

译文:https://blog.csdn.net/u010801994/article/details/81914716

enlarge your dataset的更多相关文章

  1. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  2. Paper: ImageNet Classification with Deep Convolutional Neural Network

    本文介绍了Alex net 在imageNet Classification 中的惊人表现,获得了ImagaNet LSVRC2012第一的好成绩,开启了卷积神经网络在cv领域的广泛应用. 1.数据集 ...

  3. 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)

    ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...

  4. 使用Keras基于RCNN类模型的卫星/遥感地图图像语义分割

    遥感数据集 1. UC Merced Land-Use Data Set 图像像素大小为256*256,总包含21类场景图像,每一类有100张,共2100张. http://weegee.vision ...

  5. Install Tensorflow object detection API in Anaconda (Windows)

    This blog is to explain how to install Tensorflow object detection API in Anaconda in Windows 10 as ...

  6. HTML5 数据集属性dataset

    有时候在HTML元素上绑定一些额外信息,特别是JS选取操作这些元素时特别有帮助.通常我们会使用getAttribute()和setAttribute()来读和写非标题属性的值.但为此付出的代价是文档将 ...

  7. C#读取Excel,或者多个excel表,返回dataset

    把excel 表作为一个数据源进行读取 /// <summary> /// 读取Excel单个Sheet /// </summary> /// <param name=& ...

  8. DataTable DataRow DataColumn DataSet

    1.DataTable 数据表(内存) 2.DataRow DataTable 的行 3.DataColumn DataTable 的列 4.DataSet 内存中的缓存

  9. C# DataSet装换为泛型集合

    1.DataSet装换为泛型集合(注意T实体的属性其字段类型与dataset字段类型一一对应) #region DataSet装换为泛型集合 /// <summary> /// 利用反射和 ...

随机推荐

  1. 写一个小demo过程中遇到的各种问题 学生管理考勤系统(网页模拟)

    添加与新增一些小玩意的1.0.3版本:传送门 各位带哥,这不是你们要的c++.java.c#作业哈 课上要求做个小作业,学生管理考勤系统,原本想着是个练手的好机会,结果只证实了我还是个弟中弟. 设想的 ...

  2. Mybatis:通过MapperScannerConfigurer进行mapper扫描

    在applicationContext.xml里配置的

  3. leetcode1023

    class Solution(object): def getGroup(self,que): group = list() temp = '' for i in range(len(que)): c ...

  4. react-native 安卓支持 gif动态图

    需要在android/app/build.gradle文件中添加模块 //这一行没有的话得加上才行 compile "com.facebook.fresco:fresco:1.5.0&quo ...

  5. centos-yum离线源

    配置离线源 在个别开发环境中,我们可能有限制不能连外网. 这个情况可以通过用一台同内网的机器配置离线源,然后通过vsftp公用. 安装ftp rpm命令详解 $ rpm -ivh apache-1.3 ...

  6. 抛出异常 exception

    throw raise raise Exception.CreateFmt(sFileWithNoExt, [FileName]);

  7. javascript:控制一个元素高度始终等于浏览器高度

    window.onresize = function(){ this.opHtight()} //给浏览器添加窗口大小改变事件window.onresize = function(){ this.op ...

  8. libcurl+OpenSSL 库分享

    首先,我要感谢这两个博客给我的帮助: https://www.cnblogs.com/findumars/p/7496122.html https://blog.csdn.net/yannanxiu/ ...

  9. setitimer函数

    和alarm函数类似,都用于定时操作: 函数原型:int setitimer(int which, const struct itimerval *new_value, struct itimerva ...

  10. vim主题设定

    Vim的颜色主题在/usr/share/vim/vim74/colors文件夹里. 打开vim后在normal模式下输入“:colorscheme”查看当前的主题,修改主题使用命令“:colorsch ...