列举常见的几种数据集增强方法:

1.flip  翻折(左右,上下)

# NumPy.'img' = A single image.
flip_1 = np.fliplr(img)
# TensorFlow. 'x' = A placeholder for an image.
shape = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
flip_2 = tf.image.flip_up_down(x)
flip_3 = tf.image.flip_left_right(x)
flip_4 = tf.image.random_flip_up_down(x)
flip_5 = tf.image.random_flip_left_right(x)

2.rotation 旋转

# Placeholders: 'x' = A single image, 'y' = A batch of images
# 'k' denotes the number of 90 degree anticlockwise rotations
shape = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
rot_90 = tf.image.rot90(img, k=1)
rot_180 = tf.image.rot90(img, k=2)
# To rotate in any angle. In the example below, 'angles' is in radians
shape = [batch, height, width, 3]
y = tf.placeholder(dtype = tf.float32, shape = shape)
rot_tf_180 = tf.contrib.image.rotate(y, angles=3.1415)
# Scikit-Image. 'angle' = Degrees. 'img' = Input Image
# For details about 'mode', checkout the interpolation section below.
rot = skimage.transform.rotate(img, angle=45, mode='reflect')

3.scale 缩放

# Scikit Image. 'img' = Input Image, 'scale' = Scale factor
# For details about 'mode', checkout the interpolation section below.
scale_out = skimage.transform.rescale(img, scale=2.0, mode='constant')
scale_in = skimage.transform.rescale(img, scale=0.5, mode='constant')
# Don't forget to crop the images back to the original size (for
# scale_out)

4.crop 裁剪

# TensorFlow. 'x' = A placeholder for an image.
original_size = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = original_size)
# Use the following commands to perform random crops
crop_size = [new_height, new_width, channels]
seed = np.random.randint(1234)
x = tf.random_crop(x, size = crop_size, seed = seed)
output = tf.images.resize_images(x, size = original_size)

5.translation 水平或竖直移动

# pad_left, pad_right, pad_top, pad_bottom denote the pixel
# displacement. Set one of them to the desired value and rest to 0
shape = [batch, height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
# We use two functions to get our desired augmentation
x = tf.image.pad_to_bounding_box(x, pad_top, pad_left, height + pad_bottom + pad_top, width + pad_right + pad_left)
output = tf.image.crop_to_bounding_box(x, pad_bottom, pad_right, height, width)

6.gaussion noise 噪点

#TensorFlow. 'x' = A placeholder for an image.
shape = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
# Adding Gaussian noise
noise = tf.random_normal(shape=tf.shape(x), mean=0.0, stddev=1.0,
dtype=tf.float32)
output = tf.add(x, noise)

7.gan高级增强

旋转、缩放等操作,有可能造成未知区域弥补,具体细节以及上面各种方法,见下面原文链接介绍。

源文:https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced

译文:https://blog.csdn.net/u010801994/article/details/81914716

enlarge your dataset的更多相关文章

  1. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  2. Paper: ImageNet Classification with Deep Convolutional Neural Network

    本文介绍了Alex net 在imageNet Classification 中的惊人表现,获得了ImagaNet LSVRC2012第一的好成绩,开启了卷积神经网络在cv领域的广泛应用. 1.数据集 ...

  3. 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)

    ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...

  4. 使用Keras基于RCNN类模型的卫星/遥感地图图像语义分割

    遥感数据集 1. UC Merced Land-Use Data Set 图像像素大小为256*256,总包含21类场景图像,每一类有100张,共2100张. http://weegee.vision ...

  5. Install Tensorflow object detection API in Anaconda (Windows)

    This blog is to explain how to install Tensorflow object detection API in Anaconda in Windows 10 as ...

  6. HTML5 数据集属性dataset

    有时候在HTML元素上绑定一些额外信息,特别是JS选取操作这些元素时特别有帮助.通常我们会使用getAttribute()和setAttribute()来读和写非标题属性的值.但为此付出的代价是文档将 ...

  7. C#读取Excel,或者多个excel表,返回dataset

    把excel 表作为一个数据源进行读取 /// <summary> /// 读取Excel单个Sheet /// </summary> /// <param name=& ...

  8. DataTable DataRow DataColumn DataSet

    1.DataTable 数据表(内存) 2.DataRow DataTable 的行 3.DataColumn DataTable 的列 4.DataSet 内存中的缓存

  9. C# DataSet装换为泛型集合

    1.DataSet装换为泛型集合(注意T实体的属性其字段类型与dataset字段类型一一对应) #region DataSet装换为泛型集合 /// <summary> /// 利用反射和 ...

随机推荐

  1. Node 操作 MySQL 数据库

    1, 下载 mysql 依赖 => npm -i mysql 2, 写一个核心工具类, 用于获取线程池连接 mysql-util.js // 引入 mysql 数据库连接依赖 const mys ...

  2. springMVC源码学习之获取参数名

    1.入口到参数处理调用流程 入口为spring-webmvc-4.3.18.RELEASE.jar中org.springframework.web.servlet.DispatcherServlet. ...

  3. 【ASP.NET 插件】分享一款富文本web编辑器UEditor

    UEditor是由百度web前端研发部开发所见即所得富文本web编辑器,具有轻量,可定制,注重用户体验等特点,开源基于MIT协议,允许自由使用和修改代码... <%@ Page Language ...

  4. 开发MIS系统的相关技术

    Java Web应用的核心技术包括以下几个方面:● JSP:进行输入和输出的基本手段.● JavaBean:完成功能的处理.● Servlet:对应用的流程进行控制.● JDBC:是与数据库进行交互不 ...

  5. Django中MEDIA_ROOT和MEDIA_URL

    在django上传图片前端使用动态的配置方法 MEDIA_ROOT 代表着 要上传的路径会和你在models中写的上传的路径进行拼节形成最终文件上传的路径 MEDIA_URL主要就是映射了 在前端使用 ...

  6. Mac安装Python3报错Permission denied @ dir_s_mkdir - /usr/local/Frameworks

    brew安装Python3时出现的问题: Error: Permission denied @ dir_s_mkdir - /usr/local/Frameworks /usr/local/Frame ...

  7. Django的路由层详情

    1. Django的路由解析: 是从上往下进行匹配的 url(r'index', views.index) #这里的index 解析都可以被解析到的, abcindex index indexabc ...

  8. 最详细安装Esxi

    https://www.vmware.com/cn/products/vsphere-hypervisor.html Exsi 是一款虚拟化系统,与VMware,VirtualBox不同,它不需要安装 ...

  9. CentOS 7.0安装配置Vsftp服务器步骤详解

    安装Vsftp讲过最多的就是在centos6.x版本中了,这里小编看到有朋友写了一篇非常不错的CentOS 7.0安装配置Vsftp服务器教程,下面整理分享给各位. 一.配置防火墙,开启FTP服务器需 ...

  10. mysqldump: Got error: 1066: Not unique table/alias

    mysqldump: Got error: 1066: Not unique table/alias myql 导出时提示如下: [root@localhost mysql]# mysqldump  ...