enlarge your dataset
列举常见的几种数据集增强方法:
1.flip 翻折(左右,上下)
# NumPy.'img' = A single image.
flip_1 = np.fliplr(img)
# TensorFlow. 'x' = A placeholder for an image.
shape = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
flip_2 = tf.image.flip_up_down(x)
flip_3 = tf.image.flip_left_right(x)
flip_4 = tf.image.random_flip_up_down(x)
flip_5 = tf.image.random_flip_left_right(x)
2.rotation 旋转
# Placeholders: 'x' = A single image, 'y' = A batch of images
# 'k' denotes the number of 90 degree anticlockwise rotations
shape = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
rot_90 = tf.image.rot90(img, k=1)
rot_180 = tf.image.rot90(img, k=2)
# To rotate in any angle. In the example below, 'angles' is in radians
shape = [batch, height, width, 3]
y = tf.placeholder(dtype = tf.float32, shape = shape)
rot_tf_180 = tf.contrib.image.rotate(y, angles=3.1415)
# Scikit-Image. 'angle' = Degrees. 'img' = Input Image
# For details about 'mode', checkout the interpolation section below.
rot = skimage.transform.rotate(img, angle=45, mode='reflect')
3.scale 缩放
# Scikit Image. 'img' = Input Image, 'scale' = Scale factor
# For details about 'mode', checkout the interpolation section below.
scale_out = skimage.transform.rescale(img, scale=2.0, mode='constant')
scale_in = skimage.transform.rescale(img, scale=0.5, mode='constant')
# Don't forget to crop the images back to the original size (for
# scale_out)
4.crop 裁剪
# TensorFlow. 'x' = A placeholder for an image.
original_size = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = original_size)
# Use the following commands to perform random crops
crop_size = [new_height, new_width, channels]
seed = np.random.randint(1234)
x = tf.random_crop(x, size = crop_size, seed = seed)
output = tf.images.resize_images(x, size = original_size)
5.translation 水平或竖直移动
# pad_left, pad_right, pad_top, pad_bottom denote the pixel
# displacement. Set one of them to the desired value and rest to 0
shape = [batch, height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
# We use two functions to get our desired augmentation
x = tf.image.pad_to_bounding_box(x, pad_top, pad_left, height + pad_bottom + pad_top, width + pad_right + pad_left)
output = tf.image.crop_to_bounding_box(x, pad_bottom, pad_right, height, width)
6.gaussion noise 噪点
#TensorFlow. 'x' = A placeholder for an image.
shape = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
# Adding Gaussian noise
noise = tf.random_normal(shape=tf.shape(x), mean=0.0, stddev=1.0,
dtype=tf.float32)
output = tf.add(x, noise)
7.gan高级增强
旋转、缩放等操作,有可能造成未知区域弥补,具体细节以及上面各种方法,见下面原文链接介绍。
源文:https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced
译文:https://blog.csdn.net/u010801994/article/details/81914716
enlarge your dataset的更多相关文章
- AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...
- Paper: ImageNet Classification with Deep Convolutional Neural Network
本文介绍了Alex net 在imageNet Classification 中的惊人表现,获得了ImagaNet LSVRC2012第一的好成绩,开启了卷积神经网络在cv领域的广泛应用. 1.数据集 ...
- 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)
ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...
- 使用Keras基于RCNN类模型的卫星/遥感地图图像语义分割
遥感数据集 1. UC Merced Land-Use Data Set 图像像素大小为256*256,总包含21类场景图像,每一类有100张,共2100张. http://weegee.vision ...
- Install Tensorflow object detection API in Anaconda (Windows)
This blog is to explain how to install Tensorflow object detection API in Anaconda in Windows 10 as ...
- HTML5 数据集属性dataset
有时候在HTML元素上绑定一些额外信息,特别是JS选取操作这些元素时特别有帮助.通常我们会使用getAttribute()和setAttribute()来读和写非标题属性的值.但为此付出的代价是文档将 ...
- C#读取Excel,或者多个excel表,返回dataset
把excel 表作为一个数据源进行读取 /// <summary> /// 读取Excel单个Sheet /// </summary> /// <param name=& ...
- DataTable DataRow DataColumn DataSet
1.DataTable 数据表(内存) 2.DataRow DataTable 的行 3.DataColumn DataTable 的列 4.DataSet 内存中的缓存
- C# DataSet装换为泛型集合
1.DataSet装换为泛型集合(注意T实体的属性其字段类型与dataset字段类型一一对应) #region DataSet装换为泛型集合 /// <summary> /// 利用反射和 ...
随机推荐
- poi excel超出65536行数限制自动扩展Invalid row number (65536) outside allow
1.xls一个sheet只能装65536行,多余则报错 poi包导出或写入excel超出65536报错: java.lang.IllegalArgumentException: Invalid row ...
- 01.制作ico图标的工具
制作ico图标的工具在线转换地址: http://lvwenhan.com/convertico/ http://lvwenhan.com/convertico/Converticon.swf
- php实现SSO单点登录实例
1.点击登录跳转到SSO登录页面并带上当前应用的callback地址2.登录成功后生成COOKIE并将COOKIE传给callback地址3.callback地址接收SSO的COOKIE并设置在当前域 ...
- 机器学习进阶-案例实战-停车场车位识别-keras预测是否停车站有车
import numpy import os from keras import applications from keras.preprocessing.image import ImageDat ...
- UI5-Fiori初学者导航
正文 你是UI5和Fiori的新手?来对地方了. 对我来说,今年是不得不“跟上时代”去提升自己ABAP世界以外的技术技能的困难的一年.幸运的是,有很多可免费获得的信息和课程可以帮你实现这个跳跃.不要等 ...
- pod install vs pod update
Podfile文件,Podfile.lock文件 Podfile文件:指定依赖库的版本规则 Podfile.lock文件:记录当前工程中使用的依赖库的版本号 pod install会去安装podfil ...
- Arraylist JDk1.8扩容和遍历
Arraylist作为最简单的集合,需要熟悉一点,记录一下---->这边主要是注意一下扩容和遍历的过程 请看以下代码 public static void main(String[] args) ...
- C++复习:继承与派生
1继承概念 面向对象程序设计有4个主要特点:抽象.封装.继承和多态性.说了类和对象,了解了面向对象程序设计的两个重要特征一数据抽象与封装,已经能够设计出基于对象的程序,这是面向对象程序设计的基础. 要 ...
- Tcp连接的七次握手浅析
LINUX 查看tcp连接数及状态 # netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}' TIME_WAIT 8 ...
- 使用hibernate与mysql时数据不能插入的原因及解决办法
1.背景 之前从没用过hibernate,因此在网上搜了一下hibernate快速入门方面的信息,最后我按照<Myeclipse Hibernate 快速入门 中文版>(CSDN,百度文库 ...