P3000 [USACO10DEC]牛的健美操Cow Calisthenics
题目描述
Farmer John continues his never-ending quest to keep the cows fit by having them exercise on various cow paths that run through the pastures. These cow paths can be represented as a set of vertices connected with bidirectional edges so that each pair of vertices has exactly one simple path between them. In the abstract, their layout bears a remarkable resemblance to a tree. Surprisingly, each edge (as it winds its way through the pastures) has the same length.
For any given set of cow paths, the canny cows calculate the longest possible distance between any pair of vertices on the set of cowpaths and call it the pathlength. If they think this pathlength is too large, they simply refuse to exercise at all.
Farmer John has mapped the paths and found V (2 <= V <= 100,000) vertices, conveniently numbered from 1..V. In order to make shorter cowpaths, he can block the path between any two vertices, thus creating more sets of cow paths while reducing the pathlength of both cowpath sets.
Starting from a single completely connected set of paths (which have the properties of a tree), FJ can block S (1 <= S <= V-1) paths, creating S+1 sets of paths. Your goal is to compute the best paths he can create so that the largest pathlength of all those sets is minimized.
Farmer John has a list of all V-1 edges in his tree, each described by the two vertices A_i (1 <= A_i <= V) and B_i (1 <= B_i <= V; A_i != B_i) that it connects.
Consider this rather linear cowpath set (a tree with 7 vertices):
1---2---3---4---5---6---7
If FJ can block two paths, he might choose them to make a map like this:
1---2 | 3---4 | 5---6---7 where the longest pathlength is 2, which would be the answer in this case. He can do no better than this.
TIME LIMIT: 2 seconds
MEMORY LIMIT: 32 MB
Farmer John为了保持奶牛们的健康,让可怜的奶牛们不停在牧场之间 的小路上奔跑。这些奶牛的路径集合可以被表示成一个点集和一些连接 两个顶点的双向路,使得每对点之间恰好有一条简单路径。简单的说来, 这些点的布局就是一棵树,且每条边等长,都为1。 对于给定的一个奶牛路径集合,精明的奶牛们会计算出任意点对路径的最大值, 我们称之为这个路径集合的直径。如果直径太大,奶牛们就会拒绝锻炼。 Farmer John把每个点标记为1..V (2 <= V <= 100,000)。为了获得更加短 的直径,他可以选择封锁一些已经存在的道路,这样就可以得到更多的路径集合, 从而减小一些路径集合的直径。 我们从一棵树开始,FJ可以选择封锁S (1 <= S <= V-1)条双向路,从而获得 S+1个路径集合。你要做的是计算出最佳的封锁方案,使得他得到的所有路径集合 直径的最大值尽可能小。 Farmer John告诉你所有V-1条双向道路,每条表述为:顶点A_i (1 <= A_i <= V) 和 B_i (1 <= B_i <= V; A_i!= B_i)连接。
输入输出格式
输入格式:
* Line 1: Two space separated integers: V and S
* Lines 2..V: Two space separated integers: A_i and B_i
输出格式:
* Line 1: A single integer that is the best maximum pathlength FJ can achieve with S blocks
输入输出样例
7 2
6 7
3 4
6 5
1 2
3 2
4 5
2
Solution:
本题二分答案+贪心。
模拟考试的T3,思路不是很难。
我们二分子树的最大直径$mid$,然后遍历原树,将当前根节点的子节点到叶子节点的距离$dis[x]$进行从大到小排序,贪心的删掉最大边,直到最大的两个$dis$值相加不大于$mid$为止(不合法情况各耗费一次割边机会),每个子树返回当前合法的最大的$dis$值,对该过程递归,最后比较割边的次数和s。
那么时间复杂度$O(n\log ^2 n)$。
代码:
/*Code by 520 -- 10.18*/
#include<bits/stdc++.h>
#pragma GCC optimize(2)
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=1e6+;
int n,k,fa[N],to[N],net[N],h[N],cnt;
int dis[N>>],l,r,mid,ans,tot;
int root,rd[N>>];
bool vis[N>>]; int gi(){
int a=;char x=getchar();
while(x<''||x>'') x=getchar();
while(x>=''&&x<='') a=(a<<)+(a<<)+(x^),x=getchar();
return a;
} il void add(int u,int v){to[++cnt]=v,net[cnt]=h[u],h[u]=cnt,rd[v]++;} void pre(int u){
for(RE int i=h[u];i;i=net[i])
if(to[i]!=fa[u]) fa[to[i]]=u,pre(to[i]);
} int stk[N],top;
void dfs(int u){
int bot=top;
for(RE int i=h[u];i;i=net[i])
if(to[i]!=fa[u]) {
dfs(to[i]);
stk[++top]=dis[to[i]]+;
}
sort(stk+bot+,stk+top+); int i;
for(i=top;i>bot;i--)
if(stk[i]>mid||i>bot+&&stk[i]+stk[i-]>mid) tot++;
else break;
dis[u]=(i==bot?:stk[i]);
top=bot;
} il bool check(){
tot=,dfs(root);
return tot<=k;
} int main(){
n=gi(),k=gi(); int u,v;
For(i,,n) u=gi(),v=gi(),add(u,v),add(v,u);
root=rand()%n+;
pre(root);
l=,r=n;
while(l<=r){
mid=l+r>>;
if(check()) ans=mid,r=mid-;
else l=mid+;
}
cout<<ans;
return ;
}
P3000 [USACO10DEC]牛的健美操Cow Calisthenics的更多相关文章
- 【luoguP3000】 [USACO10DEC]牛的健美操Cow Calisthenics
题目链接 二分答案,判断需要断几条边,用\(f[i]\)表示以\(i\)为根的子树断边后的最长路径,对于一个点\(u\),存在\(f[v]>mid\)时就删到\(v\)的边\(f[v1]+f[v ...
- bzoj1648 / P2853 [USACO06DEC]牛的野餐Cow Picnic
P2853 [USACO06DEC]牛的野餐Cow Picnic 你愿意的话,可以写dj. 然鹅,对一个缺时间的退役选手来说,暴力模拟是一个不错的选择. 让每个奶牛都把图走一遍,显然那些被每个奶牛都走 ...
- bzoj1623 / P2909 [USACO08OPEN]牛的车Cow Cars
P2909 [USACO08OPEN]牛的车Cow Cars 显然的贪心. 按速度从小到大排序.然后找车最少的车道,查询是否能填充进去. #include<iostream> #inclu ...
- bzoj1604 / P2906 [USACO08OPEN]牛的街区Cow Neighborhoods
P2906 [USACO08OPEN]牛的街区Cow Neighborhoods 考虑维护曼哈顿距离:$\left | x_{1}-x_{2} \right |+\left | y_{1}-y_{2} ...
- 洛谷——P1821 [USACO07FEB]银牛派对Silver Cow Party
P1821 [USACO07FEB]银牛派对Silver Cow Party 题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently ...
- P2966 [USACO09DEC]牛收费路径Cow Toll Paths
P2966 [USACO09DEC]牛收费路径Cow Toll Paths 题目描述 Like everyone else, FJ is always thinking up ways to incr ...
- 洛谷P1522 牛的旅行 Cow Tours
---恢复内容开始--- P1522 牛的旅行 Cow Tours189通过502提交题目提供者该用户不存在标签 图论 USACO难度 提高+/省选-提交该题 讨论 题解 记录 最新讨论 输出格式题目 ...
- LCA【洛谷P2971】 [USACO10HOL]牛的政治Cow Politics
P2971 [USACO10HOL]牛的政治Cow Politics 农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N.恰好有N-1条单位长度的双向 ...
- 编程算法 - 最好牛线(Best Cow Line) 代码(C)
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/u012515223/article/details/37909933 最好牛线(Best Cow L ...
随机推荐
- windows linux hosts文件的配置,开发项目中域名跳转等。
我们通常都知道Windows中hosts文件(C:\Windows\System32\drivers\etc),用来映射域名的.linux上当然也有,一般在/etc/hosts下. 当工作的项目,在开 ...
- jQuery上传文件
1.引入资源 <script src="/yami/backend/backres/js/jquery.min.js"></script> <scri ...
- SqlServer执行大的数据库脚本出错解决方法
如果执行线上项目拷下来sqlserver的.sql的数据库脚本文件,如果文件较大时,那么就会报错内存不足之类的. 这时可以在命令提示符使用命令来执行脚本文件.切记,执行前先改一下数据库存放位置! 命令 ...
- Swoole Task 的应用
目录 概述 代码 小结 扩展 参考文档 概述 Swoole 异步Task,主要实现调用异步任务的执行. 常用的场景:异步支付处理.异步订单处理.异步日志处理.异步发送邮件/短信等. Swoole 的实 ...
- 2017-2018 Exp3 MAL_免杀原理与实践 20155214
目录 Exp3 MAL_免杀原理与实践 实验内容 对msf生成后门程序的检测 Veil-Evasion应用 Visual Studio2017 + shellcode生成后门 主要思路 知识点 最后的 ...
- 修改 input[type="radio"] 和 input[type="checkbox"] 的默认样式
表单中,经常会使用到单选按钮和复选框,但是,input[type="radio"] 和 input[type="checkbox"] 的默认样式在不同的浏览器或 ...
- LeetCode Letter Combinations of a Phone Number (DFS)
题意 Given a digit string, return all possible letter combinations that the number could represent. A ...
- kudu 存储引擎简析
本文由 网易云发布. 1 概述 本文主要介绍kudu底层存储引擎的数据组织方式,先看整体结构如下: 一张表会分成若干个tablet , 每个tablet 包括MetaData 元信息及若干个RowS ...
- 广州区块链系统or积分联盟
区块链技术开发至今已有十年,从概念的现世到如今初步应用,区块链开发公司在各个领域开始发光发热,很多人都想参与其中,通过区块链开发实现企业转型来适应未来市场,也有一些初创者希望借此实现创业意图,但在诸多 ...
- SQL邮件服务(解决各种疑难杂症)+案例 + 使用SQLserver 邮件系统发送SQL代理作业执行警告
首先你需要知道你要做的几部: 1 每个数据库都有自己的 SERVICE BROKER 很多SQL SERVER内部服务依赖它 2 启动 SERVICE BROKER 需要 1 STOP 你的 SQL ...