Emergency

  As an emergency rescue team leader of a city, you are given a special map of your country. The map shows several scattered cities connected by some roads. Amount of rescue teams in each city and the length of each road between any pair of cities are marked on the map. When there is an emergency call to you from some other city, your job is to lead your men to the place as quickly as possible, and at the mean time, call up as many hands on the way as possible.

Input Specification:

  Each input file contains one test case. For each test case, the first line contains 4 positive integers: N (≤) - the number of cities (and the cities are numbered from 0 to N−1), M- the number of roads, C​1​​ and C​2​​ - the cities that you are currently in and that you must save, respectively. The next line contains N integers, where the i-th integer is the number of rescue teams in the i-th city. Then M lines follow, each describes a road with three integers c​1​​, c​2​​ and L, which are the pair of cities connected by a road and the length of that road, respectively. It is guaranteed that there exists at least one path from C​1​​ to C​2​​.

Output Specification:

  For each test case, print in one line two numbers: the number of different shortest paths between C​1​​ and C​2​​, and the maximum amount of rescue teams you can possibly gather. All the numbers in a line must be separated by exactly one space, and there is no extra space allowed at the end of a line.

Sample Input:

5 6 0 2
1 2 1 5 3
0 1 1
0 2 2
0 3 1
1 2 1
2 4 1
3 4 1

Sample Output:

2 4

题目解析

本题有若干个城市与若干条连接城市的道路,每个城市中会有一定数量的救援队,要求解初给出两城市之间的最短路条数,并求出在最短路的情况下所能聚集的救援队的最大数量。

第一行给出4个正整数,分别为N(<=500)-城市数量(城市编号由0 ~ N-1,M-道路的条数,C1、C2 – 给出的两个城市。第二行给出N个整数,分别为第0 ~ N-1号城市所拥有的救援队数量。之后给随M行表示道路信息,每行包括道路两端的城市c1、 c2 与道路长度L。

由于城市最高数量只有500,所以可以之间用一个二维数组来储存道路信息,用一维数组teamCnt储存每个城市所拥有的救援队数量,vector<int>pre[i] 存储i城市的前驱城市,之后dijkstra获取每个城市的前驱,这样便可以构建出一张由最短路径组成的邻接表。之后dfs这张邻接表获取C1到C2的最短路径数量与最多课聚集救援队数量即可。

  

 #include <bits/stdc++.h>
using namespace std;
const int MAX = ;
int n, m, c1, c2;
int G[MAX][MAX];
int teamCnt[MAX];
int d[MAX];
bool vis[MAX] = {false};
vector<int> pre[MAX];
void dijkstra(int bg){
fill(d, d + n, INT_MAX); //初始化起点到任何点的距离都为正无穷
d[bg] = ; //起点到本身的距离为0
for(int i = ; i < n ; i++){
int minCity = -, minDis = INT_MAX;
//minCity保存最近的城市 minDis保存最近的距离
for(int j = ; j < n; j++){ //找到当前还未访问过的距离起点最近的城市
if(d[j] < minDis && !vis[j]){
minDis = d[j];
minCity = j;
}
}
if(minCity == -) //若minCity为-1证明其他城市都不与起点连通
return;
vis[minCity] = true; //将找出的最近城市标记为已访问
for(int next = ; next < n; next++){ //遍历所有点
if(!vis[next] && d[next] > d[minCity] + G[minCity][next] && G[minCity][next] != ){
//若存在未访问的点next 与起点之间的距离可被minCity优化 优化该点
d[next] = d[minCity] + G[minCity][next];
pre[next].clear();
pre[next].push_back(minCity);
//将next的前驱清空并将minCity计入next的前驱
}else if(!vis[next] && d[next] == d[minCity] + G[minCity][next] && G[minCity][next] != ){
//若存在未访问的点next 与起点之间的距离和以minCity为中转的距离相等
pre[next].push_back(minCity);
//将minCity计入next的前驱
}
}
}
}
int maxTeamCnt = INT_MIN;
//记录最大聚集救援队数量
int roadCnt = ;
//记录最短路数量
void dfs(int ed, int nowTeamCnt){ //由终点向起点搜索 nowTeamCnt表示当前聚集的救援队数量
if(ed == c1){ //若搜索到起点
maxTeamCnt = max(maxTeamCnt, nowTeamCnt); //获取最大聚集数量
roadCnt++; //最短路加一
}
for(auto i : pre[ed]){ //遍历ed的前驱
if(!vis[i]){ //若前驱还每有被计入道路
vis[i] = true;
dfs(i, nowTeamCnt + teamCnt[i]);
vis[i] = false;
}
}
}
int main()
{
scanf("%d%d%d%d", &n, &m, &c1, &c2);
//输入城市数量n 道路数量m 要计算最短路的城市c1与c2
for(int i = ; i < n; i++) //输入每个城市的救援队数量
scanf("%d", &teamCnt[i]);
memset(G, , sizeof(G)); //初始化任意两个城市之间距离为0
for(int i = ; i < m; i++){ //输入道路信息
int u, v;
scanf("%d%d", &u, &v);
scanf("%d", &G[u][v]);
G[v][u] = G[u][v];
}
dijkstra(c1); //最短路以c1为起点获取前驱
memset(vis, false, sizeof(vis));
dfs(c2, teamCnt[c2]);
printf("%d %d\n", roadCnt, maxTeamCnt);
return ;
}

PTA (Advanced Level) 1003 Emergency的更多相关文章

  1. PAT (Advanced level) 1003. Emergency (25) Dijkstra

    As an emergency rescue team leader of a city, you are given a special map of your country. The map s ...

  2. PAT (Advanced Level) 1003. Emergency (25)

    最短路+dfs 先找出可能在最短路上的边,这些边会构成一个DAG,然后在这个DAG上dfs一次就可以得到两个答案了. 也可以对DAG进行拓扑排序,然后DP求解. #include<iostrea ...

  3. PTA(Advanced Level)1036.Boys vs Girls

    This time you are asked to tell the difference between the lowest grade of all the male students and ...

  4. PTA (Advanced Level) 1004 Counting Leaves

    Counting Leaves A family hierarchy is usually presented by a pedigree tree. Your job is to count tho ...

  5. PTA (Advanced Level) 1020 Tree Traversals

    Tree Traversals Suppose that all the keys in a binary tree are distinct positive integers. Given the ...

  6. PTA(Advanced Level)1025.PAT Ranking

    To evaluate the performance of our first year CS majored students, we consider their grades of three ...

  7. PTA (Advanced Level) 1009 Product of Polynomials

    1009 Product of Polynomials This time, you are supposed to find A×B where A and B are two polynomial ...

  8. PTA (Advanced Level) 1008 Elevator

    Elevator The highest building in our city has only one elevator. A request list is made up with Npos ...

  9. PTA (Advanced Level) 1007 Maximum Subsequence Sum

    Maximum Subsequence Sum Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A continuous su ...

随机推荐

  1. Android开发——利用Cursor+CursorAdapter实现界面实时更新

    好久没有更新博客了.不是没时间写,而是太懒.而且感觉有些东西没有时间总结,之之后再想写,就想不起来了.晚上新发现一点东西,所以就及时写下来. 最近利用业余时间在看Android的Download模块, ...

  2. 初始Yarn

    YARN 产生背景 MapReduce1.x存在的问题:单点故障&节点压力大.不易扩展 资源利用率&运维成本 催生了YARN的诞生 YARN:不同计算框架可以共享同一个HDFS集群上的 ...

  3. 转:Ubuntu 10.10 安装后上不了网的原因

    最近新装了个Ubuntu10.10 发现上不了网,折腾了很久,在网上找了很多办法都不行,最后试了一招居然管用了.特此总结下Ubuntu了网的原因及对策分析. 环境:Ubuntu 10.10网络: 通过 ...

  4. scikit-FEM-例2-用Morley元在方形区域上解板弯曲问题

    """ Author: kinnala Solve the Kirchhoff plate bending problem in a unit square with c ...

  5. 键'attachdbfilename'的值无效。

    ---恢复内容开始--- ---恢复内容结束---

  6. WPF 打印界面(控件)到A4纸

    这次遇到一个需求,就是将整个界面打印在A4纸上. 需求清楚后,Bing一下关于打印,就找到一个类PrintDialog ,其中两个方法可能会用到: 特别是public void PrintVisual ...

  7. UWP Button添加圆角阴影(一)

    原文:UWP Button添加圆角阴影(一) 众所周知,17763之前的UWP控件,大部分是没有圆角属性的:而阴影也只有17763中的ThemeShadow可以直接在xaml中使用,之前的版本只能用D ...

  8. elasticsearch插件一head插件安装详解

    elasticsearch-head是一个用来浏览.与Elastic Search簇进行交互的web前端展示插件. elasticsearch-head插件主要用途: elasticsearch主要有 ...

  9. [vuejs] 深入响应式原理

    深入响应式原理 现在是时候深入一下了!Vue 最独特的特性之一,是其非侵入性的响应式系统.数据模型仅仅是普通的 JavaScript 对象.而当你修改它们时,视图会进行更新.这使得状态管理非常简单直接 ...

  10. babel 7 简单指北

    babel 7 对于 babel 7,babel 的官网已经介绍得非常详细了,但有时感觉文档和实际使用总是差那么一点东西. 主要包 先来看一下主要的包,babel 7 对于包进行了一些简化. @bab ...