PTA (Advanced Level) 1003 Emergency
Emergency
As an emergency rescue team leader of a city, you are given a special map of your country. The map shows several scattered cities connected by some roads. Amount of rescue teams in each city and the length of each road between any pair of cities are marked on the map. When there is an emergency call to you from some other city, your job is to lead your men to the place as quickly as possible, and at the mean time, call up as many hands on the way as possible.
Input Specification:
Each input file contains one test case. For each test case, the first line contains 4 positive integers: N (≤) - the number of cities (and the cities are numbered from 0 to N−1), M- the number of roads, C1 and C2 - the cities that you are currently in and that you must save, respectively. The next line contains N integers, where the i-th integer is the number of rescue teams in the i-th city. Then M lines follow, each describes a road with three integers c1, c2 and L, which are the pair of cities connected by a road and the length of that road, respectively. It is guaranteed that there exists at least one path from C1 to C2.
Output Specification:
For each test case, print in one line two numbers: the number of different shortest paths between C1 and C2, and the maximum amount of rescue teams you can possibly gather. All the numbers in a line must be separated by exactly one space, and there is no extra space allowed at the end of a line.
Sample Input:
5 6 0 2
1 2 1 5 3
0 1 1
0 2 2
0 3 1
1 2 1
2 4 1
3 4 1
Sample Output:
2 4
题目解析
本题有若干个城市与若干条连接城市的道路,每个城市中会有一定数量的救援队,要求解初给出两城市之间的最短路条数,并求出在最短路的情况下所能聚集的救援队的最大数量。
第一行给出4个正整数,分别为N(<=500)-城市数量(城市编号由0 ~ N-1,M-道路的条数,C1、C2 – 给出的两个城市。第二行给出N个整数,分别为第0 ~ N-1号城市所拥有的救援队数量。之后给随M行表示道路信息,每行包括道路两端的城市c1、 c2 与道路长度L。
由于城市最高数量只有500,所以可以之间用一个二维数组来储存道路信息,用一维数组teamCnt储存每个城市所拥有的救援队数量,vector<int>pre[i] 存储i城市的前驱城市,之后dijkstra获取每个城市的前驱,这样便可以构建出一张由最短路径组成的邻接表。之后dfs这张邻接表获取C1到C2的最短路径数量与最多课聚集救援队数量即可。
#include <bits/stdc++.h>
using namespace std;
const int MAX = ;
int n, m, c1, c2;
int G[MAX][MAX];
int teamCnt[MAX];
int d[MAX];
bool vis[MAX] = {false};
vector<int> pre[MAX];
void dijkstra(int bg){
fill(d, d + n, INT_MAX); //初始化起点到任何点的距离都为正无穷
d[bg] = ; //起点到本身的距离为0
for(int i = ; i < n ; i++){
int minCity = -, minDis = INT_MAX;
//minCity保存最近的城市 minDis保存最近的距离
for(int j = ; j < n; j++){ //找到当前还未访问过的距离起点最近的城市
if(d[j] < minDis && !vis[j]){
minDis = d[j];
minCity = j;
}
}
if(minCity == -) //若minCity为-1证明其他城市都不与起点连通
return;
vis[minCity] = true; //将找出的最近城市标记为已访问
for(int next = ; next < n; next++){ //遍历所有点
if(!vis[next] && d[next] > d[minCity] + G[minCity][next] && G[minCity][next] != ){
//若存在未访问的点next 与起点之间的距离可被minCity优化 优化该点
d[next] = d[minCity] + G[minCity][next];
pre[next].clear();
pre[next].push_back(minCity);
//将next的前驱清空并将minCity计入next的前驱
}else if(!vis[next] && d[next] == d[minCity] + G[minCity][next] && G[minCity][next] != ){
//若存在未访问的点next 与起点之间的距离和以minCity为中转的距离相等
pre[next].push_back(minCity);
//将minCity计入next的前驱
}
}
}
}
int maxTeamCnt = INT_MIN;
//记录最大聚集救援队数量
int roadCnt = ;
//记录最短路数量
void dfs(int ed, int nowTeamCnt){ //由终点向起点搜索 nowTeamCnt表示当前聚集的救援队数量
if(ed == c1){ //若搜索到起点
maxTeamCnt = max(maxTeamCnt, nowTeamCnt); //获取最大聚集数量
roadCnt++; //最短路加一
}
for(auto i : pre[ed]){ //遍历ed的前驱
if(!vis[i]){ //若前驱还每有被计入道路
vis[i] = true;
dfs(i, nowTeamCnt + teamCnt[i]);
vis[i] = false;
}
}
}
int main()
{
scanf("%d%d%d%d", &n, &m, &c1, &c2);
//输入城市数量n 道路数量m 要计算最短路的城市c1与c2
for(int i = ; i < n; i++) //输入每个城市的救援队数量
scanf("%d", &teamCnt[i]);
memset(G, , sizeof(G)); //初始化任意两个城市之间距离为0
for(int i = ; i < m; i++){ //输入道路信息
int u, v;
scanf("%d%d", &u, &v);
scanf("%d", &G[u][v]);
G[v][u] = G[u][v];
}
dijkstra(c1); //最短路以c1为起点获取前驱
memset(vis, false, sizeof(vis));
dfs(c2, teamCnt[c2]);
printf("%d %d\n", roadCnt, maxTeamCnt);
return ;
}
PTA (Advanced Level) 1003 Emergency的更多相关文章
- PAT (Advanced level) 1003. Emergency (25) Dijkstra
As an emergency rescue team leader of a city, you are given a special map of your country. The map s ...
- PAT (Advanced Level) 1003. Emergency (25)
最短路+dfs 先找出可能在最短路上的边,这些边会构成一个DAG,然后在这个DAG上dfs一次就可以得到两个答案了. 也可以对DAG进行拓扑排序,然后DP求解. #include<iostrea ...
- PTA(Advanced Level)1036.Boys vs Girls
This time you are asked to tell the difference between the lowest grade of all the male students and ...
- PTA (Advanced Level) 1004 Counting Leaves
Counting Leaves A family hierarchy is usually presented by a pedigree tree. Your job is to count tho ...
- PTA (Advanced Level) 1020 Tree Traversals
Tree Traversals Suppose that all the keys in a binary tree are distinct positive integers. Given the ...
- PTA(Advanced Level)1025.PAT Ranking
To evaluate the performance of our first year CS majored students, we consider their grades of three ...
- PTA (Advanced Level) 1009 Product of Polynomials
1009 Product of Polynomials This time, you are supposed to find A×B where A and B are two polynomial ...
- PTA (Advanced Level) 1008 Elevator
Elevator The highest building in our city has only one elevator. A request list is made up with Npos ...
- PTA (Advanced Level) 1007 Maximum Subsequence Sum
Maximum Subsequence Sum Given a sequence of K integers { N1, N2, ..., NK }. A continuous su ...
随机推荐
- Digital Roots—HDU1013 2016-05-06 10:25 85人阅读 评论(0) 收藏
Digital Roots Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- WP8整合Bing应用,生活有求Bing
在Windows 8中,Bing应用一直随系统而存在,提供多样化的资讯.它们是我的“御用”App,因为可以根据我的使用习惯对应用进行定制. 在Windows Phone 8系统第三次官方更新之后, B ...
- hdu5016
题意:给定一个n个点的图,这个图是一棵树,然后有些点建立了集市.并且没有集市的地方去集市一定是去最近的,如果距离相同,那么则去标号最小的..现在你还能在建一个集市,问建完这个集市最多有多少个点来这里. ...
- Android之TextView灵活使用
Android之TextView灵活使用 在项目中有无遇到过这样一种程况,例如文字"王明今年10岁了", 但是数字10是从网络返回的数据, 而你又想把这个文字写在xml中, 过往我 ...
- https://www.cnblogs.com/hnxxcxg/p/6085149.html
DELPHI微信支付代码 不管是微信支付还是支付宝支付, 3个最棘手的问题是:1,如何生成签名2,支付请求如何提交3, 如何验证签名 下面就围绕这二个问题来讲. 我使用的是XE3. 先看微信支付: ...
- 电子书推荐--《Python灰帽子》,python黑客编程
点此在线阅读 <Python灰帽子>是由知名安全机构Immunity Inc的资深黑帽Justin Seitz主笔撰写的一本关于编程语言Python如何被广泛应用于黑客与逆向工程领域的书籍 ...
- WinForm中DataGridView的TextBoxColumm换行
一.内容超过显示宽度自动换行: 在需要自动换行的列中设置 二.换行符换行: 一开始在需要换行的文本添加"\r\n"并不能直接换行,DGV直接把\r\n显示出来了,后换成 Syste ...
- 使用C#写MVC框架(一:核心原理)
目录: 一.MVC原理解析 二.HttpHandler 1.HttpHandler,IHttpHandler,MvcHandler的说明 2.IHttpHandler解析 3.MvcHandler解析 ...
- delphi datetimepicker 修改时间无效问题
今天用delphi写个程序,使用datetimepicker获得想要的时间.蛋疼的问题是无论怎么调整明明看着控件里面的日期变了,但是show出来的datetimepicker.datetime日期都不 ...
- 3、JUC--ConcurrentHashMap 锁分段机制
ConcurrentHashMap Java 5.0 在 java.util.concurrent 包中提供了多种并发容器类来改进同步容器的性能. ConcurrentHashMap 同步容器 ...