P2634 [国家集训队]聪聪可可

题目描述

聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃、两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已经玩儿腻了这种低智商的游戏。

他们的爸爸快被他们的争吵烦死了,所以他发明了一个新游戏:由爸爸在纸上画n个“点”,并用n-1条“边”把这n个“点”恰好连通(其实这就是一棵树)。并且每条“边”上都有一个数。接下来由聪聪和可可分别随即选一个点(当然他们选点时是看不到这棵树的),如果两个点之间所有边上数的和加起来恰好是3的倍数,则判聪聪赢,否则可可赢。

聪聪非常爱思考问题,在每次游戏后都会仔细研究这棵树,希望知道对于这张图自己的获胜概率是多少。现请你帮忙求出这个值以验证聪聪的答案是否正确。

输入格式

输入的第1行包含1个正整数n。后面n-1行,每行3个整数x、y、w,表示x号点和y号点之间有一条边,上面的数是w。

输出格式

以即约分数形式输出这个概率(即“a/b”的形式,其中a和b必须互质。如果概率为1,输出“1/1”)。

输入输出样例

输入 #1复制

5
1 2 1
1 3 2
1 4 1
2 5 3
输出 #1复制

13/25

说明/提示

【样例说明】

13组点对分别是(1,1) (2,2) (2,3) (2,5) (3,2) (3,3) (3,4) (3,5) (4,3) (4,4) (5,2) (5,3) (5,5)。

【数据规模】

对于100%的数据,n<=20000。

sol:树形dp即可,也可以点分(很久前写的(大雾,dp[i][j]表示以i为根的子树中到i的和%i=j的个数

#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline ll read()
{
ll s=; bool f=; char ch=' ';
while(!isdigit(ch)) {f|=(ch=='-'); ch=getchar();}
while(isdigit(ch)) {s=(s<<)+(s<<)+(ch^); ch=getchar();}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<) {putchar('-'); x=-x;}
if(x<) {putchar(x+''); return;}
write(x/); putchar((x%)+'');
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int N=,M=;
int n,dp[N][],ans=;
int tot=,Next[M],to[M],val[M],head[N];
inline void Link(int x,int y,int z){Next[++tot]=head[x]; to[tot]=y; val[tot]=z; head[x]=tot;}
inline void dfs(int x,int fat)
{
int e,i,j;
dp[x][]=; dp[x][]=dp[x][]=;
for(e=head[x];e;e=Next[e]) if(to[e]!=fat)
{
dfs(to[e],x);
for(i=;i<;i++)
{
ans+=dp[x][i]*dp[to[e]][(-i-val[e])%]*;
}
for(i=;i<;i++)
{
dp[x][(i+val[e])%]+=dp[to[e]][i];
}
}
// cout<<x<<' '<<dp[x][0]<<' '<<dp[x][1]<<' '<<dp[x][2]<<endl;
}
int main()
{
int i,x,y,z;
R(n);
for(i=;i<n;i++)
{
R(x); R(y); z=read()%; Link(x,y,z); Link(y,x,z);
}
dfs(,);
ans+=n;
int gg=__gcd(n*n,ans);
write(ans/gg); putchar('/'); Wl(n*n/gg);
return ;
}
/*
input
5
1 2 1
1 3 2
1 4 1
2 5 3
output
13/25
*/
#include <cstdio>
#include <algorithm>
using namespace std;
const int N=,M=,inf=0x3f3f3f3f;
int n,re=,tot=,Next[M],to[M],val[M],head[M],rt,sum,sz[N],pp[N],arr[N],tong[],gg;
inline void add(int x,int y,int z){Next[++tot]=head[x];to[tot]=y;val[tot]=z;head[x]=tot;}
inline int gcd(int x,int y){return (y==)?x:gcd(y,x%y);}
inline void getrt(int x,int fa)
{
int i; sz[x]=; pp[x]=;
for(i=head[x];i;i=Next[i])
{
if(!arr[to[i]]&&to[i]!=fa){getrt(to[i],x); sz[x]+=sz[to[i]]; pp[x]=max(pp[x],sz[to[i]]);}
}pp[x]=max(pp[x],sum-pp[x]); if(pp[x]<pp[rt])rt=x;
}
inline void dfs(int x,int fa,int pre)
{
tong[pre]++; int i;
for(i=head[x];i;i=Next[i])
{
if(to[i]!=fa&&!arr[to[i]])dfs(to[i],x,(pre+val[i])%);
}
}
inline void calc(int x,int op,int v)
{
tong[]=tong[]=tong[]=; dfs(x,,v%); re+=op*(*tong[]*tong[]+tong[]*tong[]+tong[]+tong[]);
}
inline void solve(int x)
{
int i; arr[x]=; calc(x,,);
for(i=head[x];i;i=Next[i])
{
if(!arr[to[i]])
{
calc(to[i],-,val[i]); sum=sz[to[i]]; pp[rt=]=inf; getrt(to[i],); solve(rt);
}
}
}
int main()
{
int i,x,y,z; scanf("%d",&n); sum=pp[rt=]=n;
for(i=;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z); add(x,y,z); add(y,x,z);
}getrt(,); solve(rt); gg=gcd(re,n*n); printf("%d/%d\n",re/gg,n*n/gg);
}

点分

luogu2634的更多相关文章

  1. luogu2634 聪聪可可 (树形dp)

    要求出两点间距离==0(mod3) 的数量,然后除以(n*n) 设f[i][j]为i的子树到i的距离==j(mod3)的数量,然后做树形dp即可 因为要最简,所以要求一下gcd,然后除下去 #incl ...

  2. luogu2634 聪聪可可

    点分治裸题 #include <iostream> #include <cstdio> using namespace std; int n, uu, vv, ww, ans, ...

随机推荐

  1. 正则表达式BREs,EREs,PREs的比较

    目录 正则表达式BREs,EREs,PREs的比较 正则表达式分类: Linux 中常用文本工具与正则表达式的关系 grep , egrep 正则表达式特点: sed 正则表达式特点 Awk(gawk ...

  2. C库函数:scanf、fscanf、printf、fprintf、sprintf、 snprintf

    1. scanf 函数原型 int scanf(const char *format, ...);  功能:从标准输入 stdin 读取格式化输入. 2.fscanf 函数原型 int fscanf( ...

  3. easyui-combobox多选时的小问题

    easyui-combobox可支持多选,仅需将multiple值设为true即可 $('#combobox').combobox({ url:url, multiple:true, separato ...

  4. JavaScript数组方法之reduce

    又见到数组方法了,在前面已经的多次写到过数组方法,甚至都使用原生方法重构了一遍数组的各个方法,可是随着数组方法reduce的应用,发现reduce真的是妙用无穷啊!还是很值得再拿出来说一遍的. 我们再 ...

  5. 怎样查看Redis的版本号

    Q: 怎样查看Redis版本 A: 下面两条命令都可以查看redis 版本: redis-server --version redis-server -v

  6. C# 使用Emit实现动态AOP框架 (二)

    目  录 C# 使用Emit实现动态AOP框架 (一) C# 使用Emit实现动态AOP框架 (二) C# 使用Emit实现动态AOP框架 (三) C# 使用Emit实现动态AOP框架 进阶篇之异常处 ...

  7. vue-cli之加载ico文件

    vue-cli之加载ico文件 vue-cli加载ico文件需要在vue.config.js设置ico加载,代码如下: module.exports = { publicPath: process.e ...

  8. 一种无法被Dump的jar包加密保护解决方案

    作者: 我是小三 博客: http://www.cnblogs.com/2014asm/ 由于时间和水平有限,本文会存在诸多不足,希望得到您的及时反馈与指正,多谢! 工具环境: windwos10.I ...

  9. java之JVM学习--简单了解GC算法

    JVM内存组成结构: (1)堆 所有通过new创建的对象都是在堆中分配内存,其大小可以通过-Xmx和-Xms来控制,堆被划分为新生代和旧生代,新生代又被进一步划分为Eden和Survivor区.Sur ...

  10. 网页接入dingding扫码登录

    前言 有时候我们做了一些网页,希望只有某些人才能看的话,可以搞一个钉钉扫码登录,接入也比较简单,下面记录下接入的过程. 流程 我们先看看官方的文档:钉钉接入文档梳理一下官方的流程:1.先跳去一个扫码网 ...