【51nod】1407 与与与与

设\(f(x)\) 为\(A_{i} \& x == x\)的\(A_{i}\)的个数

设\(g(x)\)为\(x\)里1的个数

\(\sum_{i = 0}^{2^{20}} (-1)^{g(x)}2^{f(x)}\)

\(f(x)\)就是按位取反之后的一个FMT卷积,把判断条件改成这一位不存在即可

也可以用FWT的与卷积直接卷起来

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define ba 47
#define MAXN 100005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 1000000007;
int N;
int a[(1 << 20) + 5],cnt[(1 << 20) + 5],pw[1000005];
int lowbit(int x) {
return x & (-x);
}
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
void update(int &x,int y) {
x = inc(x,y);
}
void Solve() {
memset(a,0,sizeof(a));
int d;
pw[0] = 1;
for(int i = 1 ; i <= N ; ++i) {
read(d);a[d]++;
pw[i] = mul(pw[i - 1],2);
}
for(int j = 0 ; j < 20 ; ++j) {
for(int S = (1 << 20) - 1 ; S >= 0 ; --S) {
if(!((S >> j) & 1)) {
a[S] += a[S ^ (1 << j)];
}
}
}
int ans = 0;
for(int S = 0 ; S < (1 << 20) ; ++S) {
if(S) cnt[S] = cnt[S - lowbit(S)] + 1;
int t;
if(cnt[S] & 1) t = MOD - 1;
else t = 1;
update(ans,mul(t,pw[a[S]]));
}
out(ans);enter;
}
int main(){
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
while(scanf("%d",&N) != EOF) Solve();
}

【51nod】1407 与与与与的更多相关文章

  1. 51nod 最近刷题 简要题解

    51nod 1564 由于数据是随机的,可以证明,对于每一个数,向左或右找比它小的数,长度是logn级别的 考虑枚举最大值 注意,对于每一个最大值,如果直接用2个循环枚举左右端点的话,理论是lognl ...

  2. NOIP前做题记录

    鉴于某些原因(主要是懒)就不一题一题写了,代码直接去\(OJ\)上看吧 CodeChef Making Change 传送门 完全没看懂题解在讲什么(一定是因为题解公式打崩的原因才不是曲明英语太差呢- ...

  3. 【51Nod 1244】莫比乌斯函数之和

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 模板题... 杜教筛和基于质因子分解的筛法都写了一下模板. 杜教筛 ...

  4. 51Nod 1268 和为K的组合

    51Nod  1268  和为K的组合 1268 和为K的组合 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 给出N个正整数组成的数组A,求能否从中选出若干个,使 ...

  5. 51Nod 1428 活动安排问题

    51Nod   1428  活动安排问题 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1428 1428 活 ...

  6. 51Nod 1278 相离的圆

    51Nod 1278 相离的圆 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1278 1278 相离的圆 基 ...

  7. 【51Nod 1501】【算法马拉松 19D】石头剪刀布威力加强版

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1501 dp求出环状不连续的前缀和,剩下东西都可以算出来,比较繁琐. 时间 ...

  8. 【51Nod 1622】【算法马拉松 19C】集合对

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1622 简单题..直接暴力快速幂 #include<cstdio&g ...

  9. 【51Nod 1616】【算法马拉松 19B】最小集合

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1616 这道题主要是查询一个数是不是原有集合的一个子集的所有数的gcd. ...

随机推荐

  1. VTK 简单点云数据显示绘制

    基于vtkPolyData,绘制时除了输入点坐标,还需要通过setVerts指定点绘制信息. simplePoints.txt的内容为简单的 xyz,如: 20 20 20 20 20 30 20 2 ...

  2. css3 perspective与translateZ变换

    css3中的坐标系,rotateX就是绕着x轴旋转,rotateY就是绕着Y轴旋转,rotateZ就是绕着z轴旋转(也就是xy平面的旋转). perspective属性用来设置视点,在css3的模型中 ...

  3. TS声明文件

    now我们来看一看TS怎么声明文件, 在JS里面我们经常会使用各种第三方类库,引入方式也不太相同,常见的就是在HTML中通过script标签引入,然后就可以使用全局变量$或者jQuery了 我们通常这 ...

  4. 【Linux性能调优一】观大局:系统平均负载load average

    要测试linux系统性能及调优,首先要从全局检查linux的平均负载 1.什么是平均负载 load average 系统平均负载,平均负载是指单位时间内,系统处于可运行状态和不可中断状态的平均进程数, ...

  5. [mcI18N]mcI18N项目简介

    mcI18N项目全称为我的世界模组本地化工具链项目(Minecraft Mod Localization Toolchain Project),是一个为我的世界模组本地化过程提供工具/平台支持的项目. ...

  6. markdown文件的基本常用编写语法

    .md即markdown文件 1.标题的几种写法: 第一种:     前面带#号,后面带文字,分别表示h1-h6,上图可以看出,只到h6,而且h1下面会有一条横线,注意,#号后面有空格 第二种:   ...

  7. Flume-Hbase-Sink针对不同版本flume与HBase的适配研究与经验总结

    https://cloud.tencent.com/developer/article/1025430 Flume-Hbase-Sink针对不同版本flume与HBase的适配研究与经验总结 mike ...

  8. 深入理解DefaultMessageListenerContainer

    DefaultMessageListenerContainer是一个用于异步消息监听的管理类. DefaultMessageListenerContainer最简单的实现逻辑,一个任务执行器,执行任务 ...

  9. 起步 - 安装 Git

    安装 Git 是时候动手尝试下 Git 了,不过得先安装好它.有许多种安装方式,主要分为两种,一种是通过编译源代码来安装:另一种是使用为特定平台预编译好的安装包. 从源代码安装 若是条件允许,从源代码 ...

  10. python高级知识

    网络udp socket的作用 进程指的是:运行的程序以及运行时用到的资源这个整体称之为进程 socket(简称 套接字) 是最通用的进程间通信的一种方式 创建socket import socket ...